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* FOREWORD

This final report presents work conducted for the Marshall Space Flight Cen-
ter (MSFC), National Aeronautics and Space Administration in response to the
requirements of Contract NAS8-36551. The work presented here was performed
by REMTECH, Inc., Huntsville, AL, and is titled “Boundary Layer Simulator

Improvement.”

The project manager for this project was Dr. Sarat C. Praharaj. The project
was very much aided by the helpful technical support of the NASA contract mon-

itor, Mr. Klaus Gross, and by Mr. Alfred Krebsbach, both of the Performance
Analysis Branch of the Propulsion Systems Division.
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Section 1

INTRODUCTION

BLIMPJ [1] has been identified by the propulsion community as the rigorous
boundary layer program in connection with the existing JANNATF reference pro-
grams such as ODE, ODK and TDK-BLM, all in Ref. [2]. The improvements
made to BLIMPJ and described in this report have potential applications-in the
design of the future Orbit Transfer Vehicle (OTV) engines. These engines will
utilize a high chamber pressure expander cycle operation mode which primarily
depends on the heat energy transmitted from the combustion products through
the thrust chamber wall. The larger the regenerative heat transfer, the higher the
chamber pressure, which, in turn, permits larger area ratio nozzles and thus, bet-
ter performance. The heat transfer to the nozzle wall is affected by such variables
as wall roughness, relaminarization and the presence of particles in the boundary
layer flow. The motor performance loss calculation for these nozzles with thick
boundary layers is inaccurate using the conventional J ANNAF procedure. Thus,
engineering procedures are required to model these effects adequately.

The first phase of this work was completed in December 1984 [3], after which
a presentation summarizing the results was made at the JANNAF combustion
meeting in 1985 [4]. Simplified analytical formulations were identified in Ref. [3]
to include the effects of wall surface roughness, relaminarization, condensed phase
and thick boundary layer in the current JANNAF thrust chamber boundary layer
skin friction and heat transfer calculation procedure. These effects will exist in
the operation of the projected high area ratio OTV engines. During Phase I, it
was recommended that the turbulence models existing in BLIMPJ be updated
in order to account for wall roughness and relaminarization, whereas engineering
approximations were given to include condensed phase effects in the boundary
layer. While conducting these studies, several assumptions were made with regard
to wall boundary conditions and their effects on the turbulence models. In addition,
a semi-automatic procedure was devised for calculating the thrust decrement in
thick boundary layers having normal pressure gradients and transverse curvature
effects. The objectives of this work concentrated on extending the applications
of the previous modules, and relaxing the analytical limitations to permit more
realistic wall and flow conditions. Some of these required modifications of the
turbulence models have already been coded in BLIMPJ (3]. An additional objective
of this effort was to conduct experimental feasibility studies to find out how to

1
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obtain quality test data with advanced instrumentation for concept verification
purposes.

This report is divided into seven distinct sections. Following the introductory
section, Section 2 validates the turbulence model to include the effects of wall
roughness and devises a way of treating multiple smooth-rough surfaces. Section 3
deals with prediction of relaminarization regions and combined effects of wall cool-
ing and surface roughness on relaminarization. A turbulence model to represent
the effects of constant condensed phase loading is given in Section 4. Section 5
describes a procedure for thrust decrement calculation in thick boundary layers
by coupling TDK and BLIMPJ and provides a way for thrust loss optimization.
Sections 6 and 7 identify potential experimental studies in rocket nozzles and the
required instrumentation to provide accurate measurements in support of the pre-
sented new analytical models. The modifications made to the turbulence models
and additions of engineering models in BLIMPJ are summarized in the Appendix.
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Section 2
WALL ROUGHNESS

2.1 Background

The importance of wall surface roughness in increasing the resistance to fluid
flows has been recognized for years. One of the principal parameters influencing the
skin friction and the surface heat transfer to a rough wall is the roughness height,
k. The early correlations which used this parameter to modify the turbulence
model due to the presence of roughness or those which used this parameter in the
engineering approaches missed the effects of roughness shape, pattern and density.
However, one of the recent correlations which modeled the surface roughness by
accounting for the roughness shapes was developed by Dirling [5], who applied it
to the prediction of nosetip shape changes. In modeling the effects of roughness
on skin friction, the boundary layer velocity profile was correlated with surface
roughness of sand. Empirical correlations have been developed for other types of
roughness elements to obtain the equivalent sand roughness. Dirling’s concept is
based on locally similar boundary layer consideration.

In the previous work of Praharaj et al. [3], simplified correlations appropriate
for rocket nozzle applications were coded in the BLIMPJ computer code. A total of
three roughness options, including two engineering options and one exact option,
were coded. The first two options perform “point” calculations, whereas the third
option simulates the effects of a rough wall on the boundary layer and accounts for
“history” effects in the boundary layer. The concept of equivalent sand roughness
was used in all the above options. Since a very small data base exists for rocket
nozzle applications, some of these options were checked for external flow situations.
All three options were utilized for the projected generic OTV nozzle to check their
consistency.

2.2 Roughness Turbulence Model Validation

A literature survey was conducted to validate the roughness formulation. One
of the few references on nozzle test data including surface roughness was due to
Reshotko et al. [6] conducted at NASA LeRC with hot air (T, = 970°R) in a 60° -
15° half-angle conical nozzle (Fig. 2.1). In contrast, much more data on roughness
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effects are available for pipe flow in the literature. The LeRC test considered a
matrix of test conditions involving various chamber pressures varying from 30 to
300 psia, yielding an order of magnitude range in Reynolds Number and three
levels of RMS roughness heights: Rgx=120 u, 175 u, and 325 u (all in inches).

TDK was first run using the geometry and test conditions given in Fig. 2.2
to compute the distribution of wall pressure to compare with measured pressures.
The comparison given in Fig. 2.3 shows excellent agreement throughout the nozzle
except at the throat/15 deg divergence cone juncture, where the pressure slope is
noticeably discontinuous. Also note that the second derivative of the wall geometry
is discontinuous here. BLIMPJ was then run for P, = 300 psia using the above wall
pressures and measured wall temperatures. It was immediately discovered that the
value of Reg was much higher than those in the relaminarization regime. Thus,
it was not necessary to turn on the relaminarization flag. A significant problem
arose in the accuracy of computed heat transfer with the use of wall temperatures
higher than approximately T}, = 660°R. These inaccuracies are attributed to the
deficiencies in the numerics employed in BLIMPJ. However, as AT (= T, — Tw)
becomes high, as is the case with most rocket engines, these inaccuracies vanish.
Thus, in the current application, whenever Ty was higher than 660°R, it was
equated to 660°R. This modification has been found not to significantly affect
the computed values of heat transfer coefficient (k) for air so long as the wall
temperatures are not too far different from the measured values. h was computed
in accordance with the procedure adopted in Ref. [6] as follows:

g
h= —F—— 2.1
HaW - HW ( )

where H,w = H,.+ Prl/3 (H, — H,) for turbulent flow

with Pr = 0.71

The roughness turbulence option was exercised for both smooth and all rough
wall situations, from which the smooth wall and Rg = 120 g, 170 px and 325 u
wall data are plotted in Figs. 2.4 through 2.7, respectively. It is seen from Fig. 2.4
that the data are turbulent over the whole nozzle. The rough wall computations
yielded higher heating than the smooth wall over most of the nozzle, as seen in
Figs. 2.5 through 2.7. The comparison with BLIMPJ is only reasonable around the
nozzle throat. It is our current opinion that these discrepancies may be partially
attributed to the heat-transfer measurement accuracy (within 10 percent) and the
accuracy (£ 10 percent) of the roughness height measurements. Also, it is not
clear from the data in Ref.[6] whether or not the authors quote the “equivalent

4
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sand roughness” values for Rg. Depending on the size, shape and density of the
roughness elements, the Rg values have been shown in Ref.[3] to vary a great deal.

2.3 Treatment of Multiple Sections with Smooth/ Rough
Wall Surfaces

Variable roughness on the nozzle wall could be a result of differential heating
load on various sections of the wall or due to the use of ablating surfaces in sections
of the nozzle wall. It could also occur if the particles in the flow deposit on
the nozzle wall. The three options coded in BLIMPJ to calculate the effects of
roughness will behave differently if the roughness parameter is turned on or off. The
two engineering options which perform “point” calculations will show discontinuity
in skin friction and wall heating calculations at the point where either roughness
of the wall is introduced into the calculations or roughness of the wall becomes
negligible. In contrast, the method of Cebeci and Chang [7] used in the third
option modifies the length scale in the inner region of the boundary layer due
to the presence of roughness and is believed to smooth the effects of transitions
between rough and smooth sections.

Modifications to the BLIMPJ computer code were made adding a variable
surface roughness option. This new option permits the user to input a table of
equivalent sand roughness heights versus normalized nozzle axial coordinates. This
table is input as part of the namelist inputs and consists of an option flag and two
arrays dimensioned to 20. With this option, a roughness profile can be defined
over the complete length of a nozzle.

The OTV nozzle check case was used to examine the results obtained when
the variable roughness option is used with the Cebeci-Smith roughness option in
BLIMPJ. Figure 2.8 shows the heat flux distribution in the OTV nozzle with
two regions of roughness. Figure 2.9 shows an expanded view of the first region of
roughness and Fig. 2.10 shows an expanded view of the second region of roughness.
It can be observed from Fig. 2.9 that the “history” effects of introducing wall
roughness at a certain location persist downstream of the roughness and blend into
the smooth wall value after a certain distance. This sample case with two regions of
roughness required four values of equivalent sand roughness to define the roughness
profile in the nozzle. With 20 values available, a wide variety of roughness profiles
can be defined. Figures 2.11 and 2.12 show the heat flux distribution in the throat
region where variable roughness was introduced. From these figures it can be seen
that the heat flux does not maintain the slope of the heat flux distribution as it
does in the other regions of the nozzle. The cause of this is not clear, except that
it falls in a region of increasing heating rate to the left of the throat and decreasing

5
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heating rates to the right of the throat.

In order to check the previously coded roughness options with measured data
in internal flow situations, a reasonable literature survey was performed and the
relevant data collected. As far as checking the effects of partially rough and par-
tially smooth surfaces on heat transfer and skin friction, some data were discovered
in Ref. [8]. The test was on a 40k subscale regeneratively cooled thrust chamber
(Fig. 2.13) at MSFC to conduct cycle life tests. During the test it was discovered
that the test section was becoming rough and the heat load was going up during
testing. Polishing the test section at the end of a run helped bring down the heat
load. Measured heat load data are given in Fig. 9.17 where the effects of polishing
the surface are clear. The wall pressure distribution (Fig. 2.14) was obtained by
running the available version of TDK, where a small discontinuity in pressure is
observed at the nozzle throat. Comparisons of the data are made in Figs. 2.15
and 2.16 with BLIMPJ output using roughness values of Rg = 45 pin. in the
combustion chamber and the throat region, and Rx = 20 pin. in the divergent
part of the nozzle. The analytical model gave a delta percent heat load between
the smooth and variably rough wall runs, which was plotted in Fig. 2.17. The
validation of the analytical model is quite good.
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Figure 2.17: Heat Load Summaries for Chambers 1 and 2 and Comparison with
BLIMPJ Prediction
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Section 3

RELAMINARIZATION

3.1 Background

The prediction of relaminarization phenomena remains as one of the strongest
tests of validity of the turbulence models existing in the literature. Relaminariza-
tion is basically a reversion from turbulence to laminar boundary layer, principally
caused by severe flow acceleration effects. The original experimental work by such
investigators as Launder [9], Patel et al. [10], Back et al. [11], and Nash-Webber [12]
serves as the basis of understanding such a phenomenon. The work of Patel et al.
concentrates on the large departures of the inner-law velocity distribution in the
presence of severe favorable pressure gradients in the turbulent boundary layers.
Launder et al., on the other hand, emphasize the measurements of turbulence and
mean velocity profiles, and cover the complete reversal of the transition process.
In the measurements by Back and Cuffel [11], and Reshotko et al. [6], a reduction
in heat transfer was observed below values typical of a turbulent boundary layer
was for regions of the nozzle where the flow acceleration is high. In these earlier
works, a threshold value of acceleration parameter K = (y,e /peUf) (dU, [ dz) of

9 to 3 x 10~° was used to trigger laminarization. The shortcoming of such an
approach lies in defining a degree of laminarization as the boundary layer makes
a transition from turbulent to laminar flow as the flow accelerates in the nozzle.
Attempts were made by investigators such as Hodge and Adams [13] who used the
k — e turbulence model in an accelerating flow and achieved reasonable correlation
with data. However, the thrust of the current work has been to develop an en-
gineering model to update the existing turbulence models in BLIMPJ. Attempts
were made in Ref. 3] to utilize the experimental data of Nash-Webber, which is
one of the best-documented experimental investigations of compressible boundary
layer. However, the application of the developed criterion [3] was found to be only
approximate when validated against measured data. The objective of this effort is
to modify this criterion to apply to more general problems.

The modified acceleration parameter due to Nash-Webber is defined as,

K = pw  dUe

= . —_— 3.1
pwU2 dz (3-)

24



RENMTECH RTR 161-01

where W and e denote wall and edge conditions, respectively. This parameter is
distinctly different from the previous one in that both wall and edge quantities
are considered here. Ky is affected by both acceleration in the inviscid boundary
Jayer edge and wall conditions. The curve-fit recommended in Ref. [3] to define
the threshold for the onset of relaminarization is given by,

Kw=aR*+bR+c (3.2)

where a = 8.935 x 10714
p = 2.239 x 10710
c = 1.0248 x 1078

and R is Reynolds Number defined by,
peUe 6

Hw

(3.3)

Rey =

The definition of Reynolds number here is somewhat different from its usual
one. Nash-Webber cites this form to be most logical for the needs of the problem
under consideration. The upper limit of the relaminarization process where the
turbulence production is fully suppressed, was put at Kline's suggested value of

3.5 x 107%. (Fig. 3.1)

Since this criterion worked only approximately for the Back and Cuffel nozzle
data as shown in Ref. 3], the original report of Nash-Webber was closely examined.
The following facts and suggestions were revealed:

1. The Nash-Webber correlation was valid for adiabatic wall condition.

9. The transition line should be moved down for cooled walls, i.e., it is easier
for turbulent flow to laminarize on cooled walls. '

3. It should be moved up for rough walls, i.e., the phenomenon is the opposite
of cooled wall flow.

3.2 Effects of Wall Roughness and Strong Regenerative
Cooling

3.2.1 Effects of Wall Cooling

It is extremely difficult to locate appropriate data to quantify the effects of wall
cooling on relaminarization. One set of data was available in Ref. [6]. The data
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available for P, = 75 psia and 30 psia from smooth wall conditions in this work are
candidates for establishing the appropriate limits for the transition regime. The
experimental data taken on the 60°-15° half-angle conical nozzle were obtained
for three levels of chamber pressure: 30, 75, and 300 psia. In the previous sec-
tion the high pressure condition has been shown to be turbulent over the whole
length of the nozzle. The high chamber pressure yields a high enough momentum
thickness Reynolds Number that the flow remains turbulent, even though the flow
acceleration is quite high. However, as the chamber pressure was reduced by an
order of magnitude, the initially turbulent boundary layer does not stay turbulent
as the flow accelerates. Figure 3.2 compares the measured heat transfer levels at
four roughness levels for each of the chamber pressures, P = 30, and 75 psia sep-
arately. Figure 3.3 compares fully turbulent prediction, fully laminar prediction
and measured heat-transfer coefficients distribution over the length of the above
nozzle for P. = 30 psia. It is seen that the data line is between the turbulent and
laminar distributions. Although the data is originally turbulent, it comes closer
to the laminar prediction as the flow accelerates. The relaminarization flag was
turned on to observe the effects of acceleration, but the prediction was far from
satisfactory, indicating that the limits of laminarization, previously coded, were
inadequate.

The report of Nash-Webber was examined to check the above limits. It was
discovered that his turbulent-laminar transition limit was based on adiabatic wall
condition. However, this report recommended modifications to be made for cooled
wall. Therefore, a study was undertaken to quantify these modifications by com-
paring against measured data. To establish these limits, the measured data were
compared against fully turbulent and fully laminar computations. This exercise
showed where transition from laminar to turbulent or turbulent to laminar flow
took place. The next thing was to obtain the Kw — Reg trajectory of the flow as it
accelerates through the nozzle. Now, if the data showed that it remained laminar
throughout, no upper limit of laminarization on Kw could be obtained from this
set of data. In fact, this was true of the smooth-wall data for P, = 30 psia, as can
be seen in Fig. 3.3. Because of high flow acceleration in the nozzle entrance for the
LeRC 60° - 15° half-angle conical nozzle (Fig. 2.2), almost all the data, including
this set, laminarized at the nozzle inlet and some made transition to turbulent flow
depending on Reynolds Number and the corresponding acceleration parameter. It
was necessary to examine the Pe = 75 psia smooth-wall data (Fig. 3.2), where the
data seem to be on the verge of transition right around the throat. This supplied
the upper limit, Kw,, which was assumed to be independent of Rey. However,
this set of data did not go all the way to the turbulent limit, and thus was unable
to supply a lower limit, Kw,. This data point is represented by a circular symbol
at K, = 0 in Fig. 3.5.
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3.2.2 Effects of Surface Roughness and Wall Cooling

Examination of the 60° - 15° half-angle nozzle data showed that the presence
of roughness slows relaminarization and as the roughness increases, the transition
to turbulent flow occurs earlier on the nozzle wall. It was very quickly discovered
that the limits of Kw, established in Section 3.2.1, for the cooled wall situation
were invalid for walls containing surface roughness. These limits somehow needed
to implicitly depend on surface roughness height.

It is well known in the literature that the effects of roughness and accelera-
tion on wall heat transfer are opposite in nature. Computations were made using
the P. = 30 psia case with a given roughness height of 325 p in RMS. By con-
sidering purely turbulent and laminar boundary layers separately and comparing
against measured data in Fig. 3.4, it is found that the data is basically turbulent
throughout the nozzle. This observation is somewhat different from that made
in the above report [6] where this data was considered transitional in the region
upstream of the nozzle throat. When the relaminarization flag was turned on, it
yielded lower values for heat-transfer coefficients, thus indicating that the coded
limits of relaminarization are inadequate.

The work of Coleman, Moffat, and Kays [14] throws some light on this by
defining a new parameter called the “Roughness Acceleration Parameter,” K, in
the following way:

K, dU.

r= 'l.']‘e_ . dz (34)

The measured data from the above test were correlated for various K, values
using the procedure described in the previous subsection. It was possible to find
both the transition limits from appropriate sets of this data undergoing transition
from laminar to turbulent flow and, finally, reaching the turbulent level. All these
data were correlated in Fig. 3.5, where the symbols © and E]represent data from
P. = 75 and 30 psia, respectively. The P. = 300 psia did not provide any useful
information in this plot since the Reynolds Numbers are much larger in magnitude,
resulting in practically no laminar flow along the nozzle. Straight lines were drawn
as approximations through the data to analytically represent the correlation. It
should be pointed out that the lower curve represents only the constant ‘¢’ in
Eq. 3.2 and that the quadratic nature of Kw, was still maintained. In other words,
knowing the value of Reg and Kw, where the transition to complete turbulent flow
takes place, the constant ‘c’ representing K, at Reg = 0 is obtained from this
equation. These correlations were then coded in BLIMPJ.
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3.3 Concept Checkout

To illustrate the use of the correlations developed earlier, BLIMPJ was run for
the three following cases for the same nozzle, by turning on the relaminarization
flag:

1. P, = 30 psia
Smooth Wall

2. P, = 75 psia
K, = 325 p in RMS

3. P, =75 psia
K, = 120 p in RMS

Figure 3.6 (Case 1) shows that the data is basically laminar throughout the
nozzle until the calculation tends to be turbulent at X/Rr ~ 0.5. This is only
artificial, since the acceleration parameter jumps down because of a pressure slope
discontinuity (Fig. 2.3) given by TDK at the throat/nozzle juncture. Figure 3.7,
on the other hand, represents Case 2 where the data are seen to be turbulent
throughout the nozzle. The next case (Fig. 3.8) is more interesting in that the
flow makes a transition from the laminar to the turbulent regime in the presence
of wall roughness and finally becomes fully turbulent downstream of the throat.
The variation of K, and Rey with z for this case is given in Fig. 3.9, whereas
Fig. 3.10 shows a cross-plot of Kw and Reg (Rw - Reg trajectory of the flow)
along with the upper and lower limits of transition. The heat-transfer prediction
for this case as given in Fig. 3.8 seems to be only approximate, and fine-tuning of
the transition-limit correlation is necessary to improve the BLIMPJ prediction.

Since the transition-limit plot was derived from a limited set of data, the cor-
relation must be used with caution. In order to make the correlation complete,
much more data must be examined and the correlation updated. The current work
provides only a guide for engineering calculations. One quick glance at the Back-
Cuffel data [11] which was examined by the current authors [3] shows that the use
of this correlation would, in fact, lower the prediction to a laminar level and would
compare much better with their measured data.

3.4 Impact of Free-stream Turbulence

Free-stream turbulence in liquid rocket nozzles is caused by the violent mixing
at the injector and by the explosive burning of the fuel-oxidizer mixture in the
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combustion chamber. The role of free-stream turbulence in gas-turbine systems
has long been recognized and has been measured in certain situations. These
studies indicate that the primary effect of an increase in free-stream turbulence
is the upstream movement of the onset of transition. The effects of free-stream
turbulence on turbulent boundary layer profiles have been found by others to give
slightly fuller profiles and higher turbulence levels, resulting in higher momentum
thicknesses, smaller form parameters, and increased heat transfer as well as skin
friction coefficients. In analyzing the combined influence of free-stream turbulence
and pressure gradient, it has been shown for nearly isothermal flows that the sign
of the pressure gradient is of dominant importance. Adverse pressure gradients
promote the onset of transition, whereas favorable pressure gradients stabilize the
boundary layer and thus counteract the effect of free-stream turbulence. In the
rocket nozzle situations, where relaminarization is a possibility because of high
favorable pressure gradients, free-stream turbulence will delay relaminarization.

More recently, Huffman et al. [15] and Charnay et al. [16] have measured in
detail the effects of free-stream turbulence upon both the mean and fluctuating
components of velocity within a turbulent boundary layer. These measurements
show very clearly the extremely large effect of free-stream turbulence upon the
turbulent transport in the outer region of the boundary layer. Huffman et al.
observed as much as a sixfold increase in the conventionally defined Prandtl’s
mixing length in the center region of the boundary layer with about 5 percent
free-stream turbulence. Examples of measurements and predictions by McDonald
et al. on a flat plate with constant pressure in the streamwise direction are given in
Ref. [17], where the effects of free-stream turbulence on skin friction, streamwise
velocity, mixing length, turbulent kinetic energy and Reynolds shear stress are
clearly seen. The investigation by Hodge and Adams [13] also considered the
effects of free-stream turbulence in their Integrated Kinetic Energy of Turbulence
(IKET) approach.

An experimental investigation carried out by Rued and Wittig [18] shows the
effects of free-stream turbulence both in zero and negative favorable pressure gra-
dients. The Reynolds analogy, 2 - St/Cjy, is shown to be largely independent of
the turbulence level. The analogy factor is observed to be constant with a mean
value of 1.1, which leads to the conclusion that heat transfer rates increase in the
same amount as the skin friction coefficients, at least in the case of zero pressure
gradient. It can also be said from the work of Ref. [18], without reproducing their
results of measurements here, that favorable pressure gradients tend to laminar-
ize the turbulent flow, whereas free-stream turbulence tends to oppose the above
effects.

In the current BLIMPJ framework, a lot of simplifications had to be made to
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integrate the effects of free-stream turbulence into the algorithm. The relationship
between turbulence intensity and Reynolds shear stress has been dealt with in
various references including Hodge and Adams [13]. The proportionality between
these two quantities depends on whether one is considering the inner or the outer
layer and also on the nature of the boundary layer, incompressible or compressible.
Roughly speaking, for isotropic turbulence

—

a v =y u” . (3.5)

where the correlation coefficient, ¥, is approximated to be -0.45. The free-stream
turbulence level, Ty, is given by,

12

T, = 0 (3.6)

Thus, from Egs. 3.5 and 3.6,

7 _ -
(u v )Boundary Layer Edge — YU T (3.7)

This was converted to an equivalent EPSA (= ple/pepe) value in subroutine
TRMBL with the proper non-dimensionalization at the boundary layer edge of
each station. The OTV nozzle was used as a test case for U.T, = 200. Since U,
increases continuously in the nozzle as the flow expands, the value of T, drops
off from 107.0 percent at the inlet to 1.24 percent at the nozzle exit, as shown in
Fig. 3.11. The variation of EPSA is given for stations 6, 12, and 20 in Figs. 3.12,
3.13 and 3.14, respectively. As clearly seen, the effects of free-stream turbulence
(with their magnitudes shown in Fig. 3.11) are much more significant in the EPSA
profile for Sta. 6 compared to the other two stations. Wall shear stress values are
plotted in Fig. 3.14, whereas AT AUW is plotted in Fig. 3.16. No validation could
be made because of lack of relevant available data. However, the increase in shear
stress at the wall due to free-stream turbulence is apparent. Similar plots were
made for heat transfer rates in Figs. 3.17 and 3.18. The disturbing negative values
for AQDOT in Fig. 3.18 are attributed to the “non-convergence” of the solution
at Sta. 3 and its effects on the subsequent two stations. It is believed that this
“non-convergence” occurred because of high Ty values in the first few stations in

the BLIMPJ run.

The approach described above, even though innovative, must be checked out
against other codes and any available data before it can be used as a reliable
engineering tool.
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Figure 3.1: Turbulent-Laminar Transition Boundary
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Figure 3.5: Kw — K, Correlation
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Figure 3.9: Variation of K and Reg vs. X /Ry for the Case in Fig. 3.8
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Section 4

EFFECTS OF CONDENSED PHASE

4.1 Background

The study of the boundary layer flow containing particles is of special interest
to the rocket engineer because of the influence of the particles on the wall shear
and heat transfer, the possible tendency of particles to collect near the wall and,
ultimately, to cause a performance loss in the thrust chamber. Typical data in
chemical engineering literature, correlated in terms of voidage, show that there
is little effect caused by solid particles until the volume percent of solids reaches
about 0.05 percent, and a marked increase occurs in heat transfer for higher solids
loading. Correlation of gas-particle heat transfer in terms of solids loading and,
sometimes, tube diameter (for pipe flow) is not entirely satisfactory, however, since
such correlations ignore the effects of particle size.

Studies of the interaction of walls with a gas-particle turbulent flow have been
accomplished by Tien [19], and Soo and Tien [20]. Tien [19] analyzed the in-
creases in heat transfer in the fluid-particle system assuming incompressible, con-
stant property flow with no radiation or velocity layer effects and no effect of the
particle on the gas flowfield. In this case, there is no increase in the asymptotic
or downstream heat transfer rate, but there is an increase while the flow is de-
veloping. Since this is similar to what happens in the expanding flow section in
the rocket nozzle, the above results were coded in BLIMPJ [3]. It must be noted
here that this formulation is valid up to a solids-to-fluid mass loading ratio- of
unity. The limited data taken by Farbar and Morley [21] showed that for solids
loading ratios greater than unity, heat transfer to the wall increases rapidly. The
solids affect both the gas boundary layer and the heat capacity of the flowing mix-
ture. The empirical results derived from this work were also coded in BLIMPJ
for rocket nozzle applications. Since small portions of the rocket nozzle contain
laminar boundary layer, some of the laminar boundary layer correlations based on
momentum integral approach were also coded in the existing version of BLIMPJ.
All the above formulations were used as a separate module which is called at will
by specifying the appropriate flag in the name-list input.

Since the OTV nozzles will be designed to operate at very low ambient pressures
and flow will expand very rapidly in the nozzle, there is every likelihood of forming a
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two-phase fluid cntaining liquid droplets and ice particles in the nozzle. Depending
on the size of the particles, a fraction of the smaller sized particles will flow in the
boundary layer, whereas most of the larger sized particles will flow in the axial
region. It is also very likely that the particle sizes will vary along the wall in the
boundary layer, as the flow expands down the nozzle. How the particle loading will
affect the skin-friction and heat transfer characteristics at the wall is the subject
to be investigated in this task.

The Hj-O; propellant system which will be used in the projected OTV engines
could produce ice particles in the expansion section of the nozzle. Since these
nozzles will have high area ratios, the expansion process will cool the gas which
is mostly water vapor and the static temperature will be low enough to freeze the
vapor and form ice particles. More and more ice particles will form as the gas flows
through the expanding nozzle. It has been found from studies on these high area
ratio nozzles, which are regeneratively cooled for part of the nozzle and radiation-
cooled for the last portion of the nozzle, that heat transfer drops off drastically
downstream of the throat and is almost negligible a moderate distance aft of the
throat. So, the formation of water droplets and ice particles occurring in this part
of the nozzle might not greatly impact the magnitude of heat transfer and skin
friction. However, the presence of particles in the boundary layer would change the
displacement and momentum thicknesses and, in turn, would alter the boundary
layer losses in the performance of the thrust chamber.

It must be noted here that the effects of particles in nozzle boundary layers have
not been treated extensively in the literature. The kind of work that exists usually
refers to pipe flow problems. The “history” effects of the particles in boundary
layer are very scarcely treated. As a consequence, only engineering approaches
were implemented in the BLIMPJ update work in Ref. [3], where no modifications
were made to the turbulence model.

If the loading of condensed phase changes as the flow expands in the nozzle,
the laminar boundary layer formulation would be affected only by the species con-
centration effect. If the flow is turbulent, the formulation given for the turbulent
boundary layer should be used. This formulation, derived from empirical consid-
erations, depends on the condensed phase loading and should be used to yield
skin friction and heat transfer quantities at the nozzle wall. The practical speci-
fication of this loading is not necessarily straightforward. It is difficult enough to
produce a certain size particle and a certain loading externally with the help of
a particle generator and supplying it to the nozzle flow. It is much more difficult
a matter to be able to quantify the solids loading in various areas of the nozzle
including the boundary layer. In the case of the high area ratio nozzle, where these
condensed phases would appear in varying loading, theoretical and experimental
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methods must be devised to quantify the loading, and the empirical and analytical
approaches suggested below should be used to effectively quantify boundary layer
losses.

4.2 Turbulence Model Representation for Condensed Phase
Loading

Soo and Tien [20] considered particle motion in a turbulent fluid stream with
emphasis on the effect of wall interference. The intensity of the particle motion was
found to always be less than the intensity of the fluid motion and is reduced further
by the wall interference effects. However, with respect to the core or mainstream
intensities, the particle motion near the wall can have a high intensity because of
the corresponding high local intensity of fluid motion near the wall.

Heat transfer will be affected at the wall because of the following two significant
effects due to the presence of particles in the boundary layer.

1. The eddy viscosity in the boundary layer is expected to fall below its clean
flow value because of particle loading in the boundary layer.

2. The specific heat of the two-phase flow will be modified because of the load-
ing, resulting in a change in heat transfer to the wall.

For small particles, it has been shown by Soo and Tien [20] that the particle
diffusivity is of a similar order as the eddy diffusivity of the stream. Thus, the
turbulence model needs no modification. However, the particle loading effect which
was considered by Tien [19], and Farbar and Morley [21] has been reported by
Praharaj [3). '

A review of the literature on the fluid dynamics of solid particles in multi-phase
systems showed different and incomplete approaches to the problem of the motion
of various size particles near the wall of a turbulent fluid. In the work of Soo [22] a
specific expression for the ratio of particle diffusivity to eddy viscosity was found as
a function of particle diameter, density, Reynolds Number (based on fluid stream
turbulent intensity) and turbulence microscales. This expression is based on the
analysis of the “probability of encounter for finite-size particles.” The final steps
for calculating the ratio of diffusivities are summarized below for completeness.

Assuming that the Reynolds Number based on relative velocity between the
particle and its surrounding fluid is small enough so that particle drag is given by
Stokes’ Law, the particle diffusivity, Dp, can be defined by the equation:
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: 1
D, = &% — B {y* (1)} (4.1)

where E {y2 (t)} is the mean square particle displacement and is given by the
following equation:

' 2
lim X .. A 2<u >1/2A*( 6 ) (1)
= - —| (4.2
S E {y ()} =2 <u > X t= Pt +0 N (4.2)

2
where < 4 >1/2 is the intensity of fluid stream turbulence,
2 _1/2
At = AL/ <u > / s (43)
F=6rrpp/ mp , (4.4)

and A7 and Ap are the Lagrangian and Eulerian microscales of stream turbulence,
respectively. Thus,

2 2
2 AV <u > 1 6
D, = A1 - 45
p=<u 2 { X Fa (FA*+1)} (4.5)

The fluid diffusivity (eddy diffusivity) obtained from the Taylor formula, using
the Lagrangian correlation coefficient, is

’2 l2
Di=X<u >= X <u >? (4.6)

Then, the ratio of particle diffusivity to eddy diffusivity may be written as,

2
D, Weu > 1 6 1
=P _1_ — 4.7
D; X Fx (FA* T 1) +0 (,\%) (+7)

Introducing the impulse response parameter I,

2

I'=gx

(4.8)

The parameter I is defined as the ratio of particle impulse response time to the
time a fluid particle remains in a velocity correlated region. For spherical particles,
this parameter can be written as,
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I'=(v7/18) < Nge> (pp/p5) (" / M) (4.9)

where

2
<Nge>= (T /v) <u >Y? (4.10)

is the particle Reynolds Number. Upon substitution of Equations 4.3 and 4.8 into
Equation 4.7, the ratio of particle diffusivity to eddy diffusivity becomes,

2 2
22=1_ﬁ_(31 )+o()‘i4) (4.11)
E

Dy AL \T+2
Within the context of the BLIMPJ algorithm using the algebraic eddy viscosity
models, the following simplifications and assumptions were made.

From Soo [22], Ag was considered to be the radius of a pipe containing the
two-phase flow. In our case, Ag was assumed to be equal to the local boundary
layer height, §. Since the turbulence intensity is not calculated in BLIMPJ as it is
done with a k — € turbulence model, certain simplifications had to be made. The
eddy contribution to the shear stress is

_ du

oV =T —pu— 4.12
puv=r ”dy (4.12)

From Schlichting’s book, the shear stress is related to the turbulence intensity
by a correlation coefficient, ¥, given by

p=uv [ (4.13)

From a limited set of data, 1 was approximated to be —0.45. Then, from Eqns.
4.12 and 4.13,

()" = 7 /045 +pol? (4.14)

where ¢ is the kinematic eddy viscosity. Since the problem usually is to obtain the
ratio in Eq. 4.11 for a given particle loading, it is essential to obtain an equivalent
size spherical particle at a given point in the boundary layer. Particle loading is
given by

Wp _ Pemp¥ (4.15)
Wy o ps
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Particle mass flow rate in an elemental ring located at radius, r, of width, Ay,

bm

1
= (2nr) (AY) (pmix) (MFp), 5~ (4.16)
This is also equivalent to the width of the particle phase ring, @, which
lbm
= () @ (), (417)
From Eqns. 4.16 and 4.17,
a=n, Vp Ay (4.18)

This formulation must be considered approximate since, clearly, @ is not the radius
of an equivalent sphere. A more detailed analysis is necessary for computing the
diffusivity ratio in such a situation.

The significance of various terms in Eq. 4.11 is dealt with in Ref. [22]. For a
fixed Ay /Ap and small particle impulse response, I, a solid particle “follows” the
fluid motion perfectly, and its diffusivity is equal to the fluid diffusivity. However,
for a fixed Az /g, a solid particle with large I does not respond to the fluid motion;
it tends to remain stationary and not diffuse.

In order to correlate the diffusivity ratio with the eddy viscosity, one can assume
constant turbulent Schmidt Number. Consequently,

Sc = (i)p == | (4.19)

€D €D
or,
€ €D
L= (4.20)
€ €D

This was coded in a subroutine called PARTCL?2 and integrated in BLIMPJ.

4.3 Concept Checkout

In order to check out the turbulence model coded for the presence of particles
in the boundary layer, the OTV nozzle configuration (Fig. 4.1) was chosen. As an
example, Aluminum was chosen to be the particle material present in the boundary
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layer. The particle loading (PLOADING) was chosen to be W,/W;s = 0.5 in the
whole boundary layer and BLIMPJ was run by turning on the particle option,
IPART=2. (The particle option, IPART=1, uses an engineering approach [3].) As
discussed in Sec. 4.1, the major effects of the particle presence in the boundary
layer are due to the species composition and the damping effects. In order to
examine the former effect, TKP(3,J) in the input was chosen to be 0.3333, which
is equivalent to W,/W; = 0.5, and IPART was set to zero in order not to call any of
the two particle subroutines corresponding to IPART=1 and 2. Then, in addition
to the input above, a separate run was made with IPART=2. The boundary layer
thicknesses for these runs including a clean flow run are plotted in Fig. 4.2. The Al
content in the boundary layer alone reduces the boundary layer height because of
a reduction of total enthalpy of the system. The damping effects of particles in the
fluid further reduce the boundary layer height because of a reduction in turbulence
intensity. Figures 4.3 through 4.5 show kinematic eddy viscosity profiles at Stations
12, 41 and 48 (marked in Fig. 4.1). At the throat (Station 12), EPSA is reduced
almost down to zero, thus making the boundary layer almost laminar. However, at
stations 41 and 48, the boundary layer heights are seen to be lower than the clean-
flow values, but EPSA values are higher in the inner layer. These EPSA values,
however, are lower than those for the specie composition effects alone. Profiles of
the particle diffusivity ratios at these stations are plotted in Fig. 4.6, where, again,
the effects are maximum at the throat. The shear profiles for these stations are
given in Figs. 4.7 through 4.9, where reductions of shear are observed across the
boundary layer. Even though EPSA values are somewhat higher in the inner layer.
These EPSA values, however, are lower than those for the mixture effects alone.
Profiles of the particle diffusivity ratios at these stations are plotted in Fig. 4.6,
where, again, the effects are maximum at the throat. The shear profiles for these
stations are given in Figs. 4.7 through 4.9, where reductions of shear are observed
across the boundary layer. Even though EPSA values are somewhat higher in the
inner layer for Stations 41 and 48, the thinning of the velocity profiles causes the
velocity gradients to be lower at a higher rate than the increase in eddy viscosity,
thus resulting in lower shear values. Figure 4.10 gives the wall shear distribution
for no particles, the species mixture effect and the total effect including damping.
The curves are so close to each other in the scale given in this figure, a separate
plot was made in Fig. 4.11 to show the ATy between the no particles and the
total effect cases, where maximum reduction is seen to occur at the nozzle throat.
Similar comparisons were made for heat transfer rate in Figs. 4.12 and 4.13, where,
again, the maximum delta occurs at the nozzle throat.

In order to check the new particle option against any available data or any
available formulation, the previously coded particle option as chosen and was run
for a loading of 0.5. The comparisons of these two options are shown in Figs. 4.14
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and 4.15. The comparison is only approximate. More credibility, however, should
be placed on the “IPART=2" option, since it considers all the effects such as mix-
ture, damping and “history” effects. In contrast, the “IPART=1" option assumes
constant property flow in the boundary layer, does not consider damping effects
and does only “point” calculations.
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Section 5

THRUST DECREMENT CALCULATION

5.1 Background

The thrust loss calculation originally implemented in BLIMPJ [1] has been
modified by REMTECH in Ref. [3]. The modified procedure is particularly appli-
cable to the projected OTV engine nozzles with high area ratio. The boundary
layer size in such nozzles depends basically on:

1. Longitudinal wall curvature

2. Pressure gradient normal to the wall
3. Transverse curvature
4

. Fluid stratification (density)

The first two items are related through the y-momentum equation. The gov-
erning boundary layer equations and their solution in BLIMPJ take into account
transverse curvature effects. The last item is a result of density gradients in the
boundary layer. In general, similarity cannot be satisfied in such nozzles with
all the above effects present. Fortunately, BLIMPJ does not assume similarity.
Three out of the above four effects were not accounted for in the original ver-
sion of BLIMPJ. Not only that, but the expression for the thrust loss calculation
did not include the consequences of these effects. So, in order to take these into
account, an approximate procedure (in keeping with the philosophy of simplified
procedures) was implemented in Ref. [3]. In this procedure, the pressure which is
an input parameter to BLIMPJ was replaced by an average value of the pressure
distribution within the thickness of the boundary layer. The above approximation,
in effect, included the contributions of longitudinal curvature, normal pressure gra-
dient and fluid stratification to thrust decrement calculation. This procedure was
applied in Ref. [3] to a typical Orbit Transfer Vehicle (OTV) nozzle and was seen
to converge in the iteration procedure employed. Some of the assumptions made
in the iteration procedure are the following:

1. The average inviscid pressure obtained from TDK across the boundary layer
width is a reasonable value to be used in BLIMPJ to define the boundary
layer in the successive iterations.
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9. The longitudinal curvature effect is only considered approximately through
the pressure averaging procedure.

In the previous work [3], all these assumptions along with other standard
boundary layer assumptions were made. It also provided procedures for calcu-
lating the performance of a rocket nozzle experiencing thick boundary layers for
the two different cases given below:

Case 1 — The potential nozzle contour is given and the objective is to define
the hardware wall contour.

Case 2 — The hardware wall contour is given and the objective is to define the
potential contour and calculate the nozzle performance.

The method had been checked out for the OTV nozzle using the procedure for
Case 1. It used RAMP (23] as the inviscid code to define the pressure profiles and
some of the pressure averaging was performed by hand. The current procedure uses
TDK instead of RAMP to define the inviscid flowfield and a code was developed
consisting of FORTRAN and control language to couple TDK and BLIMPJ to
perform the iteration procedure in an automatic mode. The details are given in
the following subsection.

5.2 Coupling of TDK with BLIMPJ

Calculation of the thick boundary layer effects on thrust loss has been accom-
plished using the procedure shown in Fig. 5.1. The first step of this procedure is
to calculate the inviscid internal fowfield using TDK. As part of this procedure,
two factors must be considered when running TDK:

1. Since the inviscid flowfield data need to be stored for the region where the
boundary layer exists, special care has to be taken in running TDK. The
extent of the flowfield calculations from the current TDK version is limited
by the last left-running characteristic line emanating from the initial Start
line, the nozzle axis or the shock, and ending at the nozzle lip. As a re-
sult, the streamline data throughout the boundary layer width at the exit
plane are not available. Thus, in order to compute this additional streamline

information, the nozzle must be extended for the input to TDK.

9. The size of the flowfield data file may be exceeded depending on the number
of start line data points and geometry of the nozzle. If this size is exceeded,
then the data file will be overwritten. To extend the size of the file, the
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variable IDMAX must be increased in the TDK input file (default: IDMAX
= 50,000).

Step two of the procedure is to run BLIMPJ to calculate the thickness of the
boundary layer. For the first iteration, BLIMPJ uses the wall pressures as an
approximation of the pressure distribution within the boundary layer. For every
additional iteration, BLIMPJ uses the integrated pressures generated by the Near
Wall Profile code (NWP) [24], written by the authors to couple TDK and BLIMPJ.

The third step in the procedure is to run NWP to calculate the thickness of the
boundary layer. The inputs to this code include the flowfield data file generated
by TDK, and the boundary layer thickness generated by BLIMPJ. The output of
NWP includes a streamline data file which is generated in the first iteration and
accessed by each successive iteration. This coupling logic which was written for
the VAX (and can be easily written for the CRAY) is reproduced in Fig. 5.2. The
operation of this software requires one-time inputs to both TDK and BLIMPJ.

Since the potential contour is given (Case 1), the hardware contour is obtained
from

Rp=Rp+6*cos ¢ (5.1)

where Rp is the hardware contour radius, Rp is the potential contour radius, §* is
the converged value of the boundary layer and ¢ is local wall slope. The procedure
for Case 2 is well documented in Ref. [3] and will not be dealt with here.

5.3 Concept Checkout

The NWP code linking the outputs of TDK and BLIMPJ compiles the flowfield
data for the streamlines emanating from the start line profile, going across the
shock located in the flowfield and ending on the last left-running characteristic
line running to the extended nozzle lip; calculates pressure profiles at given x-
locations by interpolating on individual streamlines; and integrates the pressure
profiles and calculates average pressure values on the wall.

The OTV nozzle was extended at its exit plane in a conical fashion, keeping
the exit flare angle to be the same. The length of the nozzle needed to provide
streamline information within the boundary layer was X/Rp = 200, where the area
ratio was 2107-7. TDK was run up to this area ratio, yielding the streamlines shown
in Fig. 5.3. Figures 5.4 and 5.5 show, respectively, the calculations of the boundary
layer thickness distribution and of the pressure profiles in a direction normal to the
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axis between the nozzle wall and the boundary layer edge location based on the
information obtained from the streamline data. This is the first iteration. Since
the boundary layer edge is not known for a thick boundary layer, an iteration
procedure (Fig. 5.1) is required. Figures 5.6 and 5.7 represent the results for the
second iteration. Examination of the iterated average pressure values along the
wall in Fig. 5.8 and the thrust decrement due to the boundary layer in Fig. 5.9
shows that no more iterations are necessary.

In the above calculations the boundary layer thickness was measured from the
wall in a direction normal to the nozzle axis. Since it is more accurate to measure
the boundary layer normal to the nozzle wall, NWP was modified and the first
iteration was completed. The zeroth iteration in BLIMPJ utilized the inviscid wall
pressures from TDK and calculated boundary layer quantities including the thrust
loss. This boundary layer width was sufficient to show a variation of pressure across
the boundary layer region of the inviscid flowfield. Thus, an iteration was necessary
in BLIMPJ to use an average pressure across the boundary layer region obtained
from the streamline information output by TDK. The extent of the boundary
layer width in relation to the inviscid streamlines is given in Fig. 5.10. Note
that the boundary layer plotted here is measured normal to the wall. This is
the first iteration. Iterations continued until a convergence of the thrust loss was
achieved with a specified tolerance between successive iterations. Figure 5.11 shows
the boundary layer width plot in the second iteration. It is obvious that the
boundary layer thickened because of lower average input pressures at the wall.
The pressure profiles in the second iteration plotted on the projection of the wall-
normal boundary layer width on the Y-direction are given in Fig. 5.12. The average
pressure values along the nozzle wall for the inviscid wall pressure case and for the
two iterations are given in Fig. 5.13. It is also seen that the first and second
iterations are very close to each other. The reason for the unsmooth nature of
the curves for the last two iterations in the X/Rp range of 6 to 32 is not very
clear. The thrust loss distributions along the wall are given for the zeroth and
second iterations as a function of area ratio in Fig. 5.14. It is seen that the
losses are reduced due to the convergence procedure. Figure 5.15, on the other
hand, gives the overall thrust loss of the nozzle as a function of the BLIMPJ
iterations and compares the results of the new method described here against the
more approximate method reported earlier. Method II, which is more exact than
Method I, shows somewhat more thrust loss, but quicker convergence. The thrust
area ratio distribution from ODE, ODK, TDK and actual calculations using this
procedure are given in Fig. 5.16.
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5.4 Thrust Loss Optimization

The concept of using a high area ratio nozzle in the projected OTV engine
stems from the fact that the specific impulse loss is minimized in such nozzles.
As the area ratio grows in magnitude, the two-dimensional losses become smaller
and smaller. However, as the area ratio increases, so does the friction loss. This
has been pointed out by numerous investigators. As a result, the exit area ratio
at which the inviscid thrust is maximum may be different from the area ratio at
which the actual thrust reaches a maximum.

The subject of thrust loss optimization must be considered during the design
stage. The desirability of improving on the “perfect” nozzle has been the subject
of various optimization procedures. One of those is due to Rao [25] where, given
the throat flow characteristics, nozzle length and ambient pressure, the procedure
provides a nozzle contour yielding maximum thrust. This optimization procedure
does not include the effects of wall friction.

The thrust loss optimization problem may follow the procedure given below:

1. Calculate a series of potential nozzles using such procedures as implemented
in the Rao algorithm and others for various lengths. Each nozzle has a
different area ratio and an optimized contour.

2. Calculate the corresponding inviscid thrust for each nozzle.

3. Once the nozzle contours are available, thick boundary layer calculations
based on the procedure described earlier should be followed to define the
thrust loss, and final displacement thickness distribution along the nozzle
wall and the corresponding hardware nozzle wall contour. This defines the
thrust loss variation with area ratio for nozzles with optimum contours.

4. Optimize the resulting thrust ( = T inviscid — friction drag) with respect to
area ratio with possible length or structural weight constraints.

The above procedure must be considered preliminary at this stage. Other issues
such as structural design and other nozzle losses may play significant roles in this
optimization process.

It is well known that the gain of the ISP obtained by expanding the flow in
a high area ratio nozzle is limited by the boundary layer losses. It was seen in
Fig. 5.14 that as the area ratio increases, so does the boundary layer loss. Thus,
the area ratio must be optimized to yield maximum performance. A parametric
study was conducted for a typical high expansion area ratio nozzle such as the OTV
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nozzle. The only parameter chosen for the study was area ratio. The geometry of
the nozzle for each area ratio was assumed to be a part of the same overall high area
ratio nozzle. The thrust calculations shown in Fig. 5.16 were obtained from the
ODE, ODK, TDK and real thrust calculation algorithms. The differences between
ODE and ODK are due to the kinetic losses. The differences between ODK and
TDK are attributed to the two-dimensional losses. The thrust decrements due
to the boundary layer losses are given by the lower curve. Note that the thrust
decrement iteration procedure described earlier has been taken into account for
the lower curve.

The thrust loss optimization work performed so far was applied to the OTV
nozzle. The area ratios higher than the design exit area ratio were obtained by
extending the nozzle from the exit plane. The extended length of the nozzle needed
to apply the iteration procedure was at an area ratio, A/A* = 2500. BLIMPJ was
run up to this area ratio. The thrust loss distribution from the zeroth iteration
over the nozzle length is shown in Fig. 5.17. The abrupt change in slope of this
curve around A/A* = 1293 may be attributed to the abrupt change in the second
derivative of the nozzle area ratio with respect to axial distance. This also shows
the thrust loss variation with area ratio as a function of iterations as the solution
converges. The convergence required only three iterations to reach the tolerance
of 1 lb. thrust between iterations at the exit plane area ratio, A/A* = 1852.
Although the original intention was to run up to an area ratio of 2500 to obtain all
the needed profile information at the exit plane area ratio of approximately 2000,
the last left-running characteristic did not yield all the streamline information all
the way up to the boundary layer edge location at Sta. 2000. As a result, the
last station at which all the streamline information was available was Sta. 1852.
Figure 5.18 shows the thrust loss as a function of iterations for A/A* = 1852.53
and 1267.22. The last A/A* was close to the former exit area ratio of 1293. It
must be noted that the tolerance between the second and third iteration is one lb.
for both stations. The thrust information is given in Fig. 5.19 where the inviscid
thrust from TDK, thrust loss from BLIMPJ for the last iteration and the resulting
actual thrust are plotted.

One can already observe the ineffectiveness of the nozzle in producing more
thrust beyond A/A* = 1293. To quantify this thrust increase with area ratio,
Fig. 5.20 was prepared showing change of thrust from station to station as a
function of area ratio. It is very clear that beyond A/A* = 1852.22 where the
change of thrust from its previous station is about 15 lbs., no more appreciable
thrust gain will be realized by further extending the nozzle. The zero location of
this plot was not obtained for the following reasons:

1. It was not possible to run beyond A/A* = 1852 at REMTECH’s VAX be-
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cause of space limitations.

9. Since the inviscid thrust increases by extending the nozzle in a conical fash-
jon, and the thrust loss also increases because of higher displacement effects
with running length, the total thrust may be asymptotic in nature. This
must be considered a conjecture at this point.

3. On the other hand, if the nozzle were extended in a cylindrical fashion, the
inviscid thrust should level off and the viscous losses should increase, thus
resulting in negative change of thrust from station to station. This has not
been exercised at this point.
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The following is a set of jcl to execute the TDK, BLIMPJ and NWPl until
a solution is found ( i.e. thrust loss for a given model is less
than 20 1lbs )

Note: All text to the right of an "!" is to be considered a comment

D. Hollman

REMTECH Inc.

29-APR-88
SET DEF DSAl:[HOLLMAN.TDK] ! Move to current directory

WRITE SYSSOUTPUT " 1. START AT BEGINNING"!

WRITE SYSSOUTPUT " 2. START AT BLIMPJ3" ! OQutput menu to user
WRITE SYSSOUTPUT " 3. START AT NWP1" !

WRITE SyYssouTreuT "" _

INQUIRE/NOPUN CHOICE "ENTER CHOICE -->" ! Get input from user
WRITE SYS$SOUTPUT "" !

IF CHOICE .EQ. 1 THEN GOTO START ! If user selects "1", start at beginning
INQUIRE COUNT "ENTER ITERATION NUMBER -->" ! Get starting iteration number
IF CHOICE .EQ. 2 THEN GOTO BLIMPJ ! Start at BLIMPJ

IF CHOICE .EQ. 3 THEN GOTO NWP ! Start at NWP

START:

$
$
S
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
§ COUNT =1
$ OPEN/WRITE FILE ITER.DAT Output current iteration number to "ITER.DAT"
$ WRITE FILE ''COUNT'
$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

CLOSE FILE

r— e o o

BLIMPJ:

CLOSE ITER.DAT
UNLOCK ITER.DAT
Pl
P2

"BLM_ITER''COUNT'.OUT" ! Assign iteration dependent filenames to
“AVG_PRESS_ITER''COUNT'.PLT" | average pressure and BLM_ITER

ASSIGN "THRUST_LOSS_ITER''COUNT'.PLT" FOR072 ! Qutput thrust loss data
! to unit 72

WRITE SYSSOUTPUT "ITERATION =''COUNT'" ! Notify user of progress
WRITE SYSSOUTPUT "EXECUTING BLIMPJ ..."!

@dual:[eng_codes.tdk]b3 'Pl1 'P2 ! Execute BLIMPJ code

DEASS FOR072

'

NWP:

COUNT1 = COUNT + 1

COPY RADIUS2.DAT BNDRY_ITER'COUNT.DAT ! Copy radius information to bndry

{ layer file

ASSIGN "AVG_PRESS_ITER''COUNT1l'.PLT" FOR071 ! Assign iteration dependent
ASSIGN "BNDRY_ITER''COUNT'.DAT" FOR020 | average pressure and boundary layer
! files to FORTRAN unit numbers

WRITE SYSSOUTPUT "EXECUTING NWP ..."

RUN NWPl ! Execute NWP code

Figure 5.2: VAX JCL for Coupling Software
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DEASS FOR071 ! Deassign FORTRAN unit numbers
DEASS FOR020 !

i IF NWP HAS DECLARED THAT ANOTHER ITERATION SHOULD BE DONE, THEN GOTO ITER
OPEN/READ FILE ITER.DAT ! If NWP code declares we should stop, it will

READ FILE Pl ! write an "-1" in "ITER.DAT". This routine will
CLOSE FILE ! stop when condition is true.

IF P1 .EQ. "-1" THEN GOTO EXIT

ITER:

COUNT = COUNT + 1 ! Increment iteration counter

OPEN/WRITE FILE ITER.DAT ! Output iteration number to "ITER.DAT"
WRITE FILE ' 'COUNT'

CLOSE FILE

GOTO BLIMPJ ! Goto BLIMPJ section and repeat process

EXIT: ! Stop excecutlion

Figure 5.2: VAX JCL for Coupling Software (Concluded)
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Section 6
EXPERIMENTAL FEASIBILITY STUDIES

6.1 Background

It is the opinion of the authors that the boundary layer flow in liquid rocket
engines has not been adequately investigated experimentally to make available flow
field data of good quality for guiding code development and for code evaluation
for this class of flows. In the region close to the nozzle wall, viscous effects are
significant. The losses due to the momentum decrement at the wall because of
viscous effects are referred to as boundary layer losses. These can be calculated
by using such codes as Boundary Layer Integral Matrix Procedure - JANNAF
Version (BLIMPJ) and Boundary Layer Module (BLM). Systematic measurements
to verify the calculated boundary layer losses hardly exist, and the ones that exist
are associated with a high degree of uncertainty. Therefore, experimental data
of high quality suitable for boundary layer code validation in such applications
as the effects of wall surface roughness, relaminarization, solid particles in the
boundary layer, and thick boundary layer effect in high area ratio nozzles such as
those being considered for the future Orbit Transfer Vehicle (OTV), are currently
needed. The objective of this effort is to provide basic considerations for measuring
boundary layer losses and to guide the test engineer in selecting the appropriate
type of test, the parameters to be measured, necessary test facility, and required
instrumentation with associated operation complexity.

The first section of the experimental feasibility studies focuses on identifying
the potential measurements which directly relate to parameters in the input or
output of the relevant computer code, the relationship between the measurement
and associated parameter, direct measurement, if possible, and measurement loca-
tion in the thrust chamber. Measured parameters needed for data interpretation
are vacuum thrust, flow rates, pressures, enthalpies, compositions, temperatures,
velocities, and turbulent quantities. These parameters are usually combined into
meaningful performance parameters such as specific impulse (I,), exhaust proper-
ties and boundary layer properties. The above information has been summarized
in charts and tables to make it easily accessible. The recommendations given here
are based on the ideas given in Ref. [26]. Considerations were given to cold flow,
hot flow, reactive flow, scaled model, full size configuration, small or large area
ratio nozzles, hot wall, controlled heat transfer, etc. The results from these tests
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will provide the best data for verification of the analytical model.

6.2 Identification of Potential Boundary Layer Measure-
ments

Both the data analyst and the test engineer must realize that the parameters
of interest may not always be measured directly, but instead may be measured
indirectly and related to the parameter through an analytical procedure. It should
further be noted that the parameters of interest cannot always be measured directly
at the location of interest. In the case of boundary layer losses, they could be
measured directly by probing the boundary layer, thus providing an alternative to
quantify the boundary layer losses.

The boundary layer losses in the thrust chamber are a result of losses in the
available thrust caused by transfer of momentum and heat to the wall. In most
rocket engines, these losses are more significant than the other losses described in
Ref. [26]. Especially in engines, which utilize high area ratios to achieve a higher
specific impulse, these losses might even be a higher percentage of the total losses.

In order to characterize the losses, it is necessary to gain insight into such
aspects as the flow field, heat transfer, mixture ratio, gas composition etc. in the
thrust chamber. The various parameters used in the boundary layer code, both in
its input and output sections, could be measured. If direct measurements of these
parameters are not possible, then certain related measurements should be made,
and the parameters determined from the measurements via appropriate analytical
procedures.

In order to understand the flow field and chemistry of the hot gas in the nozzle
boundary layer, several auxiliary measurements are usually made. In addition to
making direct thrust measurements, other quantities such as mixture ratio, com-
bustion chamber pressure, total enthalpy, wall temperature, pressure distribution
along the wall and geometry of the thrust chamber, which simulate the input pa-
rameters to BLIMPJ; and such quantities as heat transfer to the wall, velocity
and temperature profiles in the boundary layer, turbulence in the boundary layer,
and exhaust gas composition, which simulate the output of BLIMPJ, need to be
measured.

Potential errors in measurement are indicated when:

e Wall temperature measurements are significantly different from predictions.

e Wall heat fluxes are significantly different from BLIMPJ predictions.
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e Total heat load from the boundary layer is significantly different from BLIMPJ
predictions.

¢ Boundary layer composition, temperature, pressure, and velocity profiles nor-
mal to the wall are significantly different from BLIMPJ predictions.

o The measured boundary layer thrust (or IL,p) loss is quite different from
BLIMPJ math model predictions.

When these discrepancies are indicated in the measurements, the sources of
error may lie in:

e Computation of wall temperature profile

e Starting point of the boundary layer

¢ Non boundary layer heat losses

e Mixture ratio and mass distribution

o Gas transport table look-up properties being incorrect

o Nonuniformity of pressure in the boundary layer, as evident in thick bound-
ary layer situations.

¢ Presence of chemical kinetic effects in the boundary layer
e Friction and heat transfer correlations (turbulence model)

¢ Engineering assumptions made in computing boundary layer losses

The updated performance code (BLIMPJ) parameters to be measured, mea-
surements necessary to relate to these parameters and measurement locations are
summarized in Table 6.1.

Boundary layer losses are a regular feature of all nozzles. It is obvious from the
literature that for a moderately large area ratio nozzle, the boundary layer losses
will be significant. It is expected that as the area ratio increases, these losses will
also grow.

Major concerns in setting up this test are:

¢ Using air only at moderately high temperatures (T ~ 300°F) in the chamber
to avoid reaction between N3 and Os.
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¢ Using an inert gas such as argon, freon, etc. which does not react when heated
to a high temperature

¢ Avoiding nozzle flow separation

e Test duration - In short duration testing it is hard to measure thrust by a load
cell. Also, it is more difficult to probe the boundary layer. In long-duration
testing, however,

1. Scaling problems are alleviated.
2. More than one measurement per run can be made.
3. High altitude simulation requires a very large facility.

4. Depending on the nozzle size and test duration, cost can be a factor.
Some of the key data that can be obtained from such tests are:

¢ Boundary layer loss measurement
o Heat transfer effects on the nozzle wall

¢ Boundary layer probe measurements in the nozzle - An example is the tests

by Back and Cuffel [11].

6.3 Test Facilities

The validation of the turbulence models suggested in this report against mea-
sured data would make them very powerful for future rocket nozzle design. Ta-
ble 6.2 gives a short list of test facilities available around the country which may
be used for reactive full-scale or sub-scale nozzle flow testing.

The roughness model was validated in this report against data measured with
the 60°-15° half angle conical nozzle and gave reasonable correlation. However,
problems remain with the validation at the nozzle throat region. The full-scale
or large-scale reactive firing engines as shown in Table 6.2 are not easily tested
for wall roughness, whether uniformly or variably present in the nozzle. A labo-
ratory experiment with hot gas (preferably air) as the flowing medium and with
multiple nozzle geometries containing roughness must be designed to fully test the
turbulence models. In addition, a variety of roughness elements with a variety of
roughness densities, which provides a range of “equivalent sand roughness,” should
be implemented for a complete validation.
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A similar argument is also put forward to test the relaminarization module.
The relaminarization module developed by Nash-Webber [12] was very extensively
tested at the MIT Gas Turbine Laboratory. He used variable nozzle geometries
to create the required acceleration parameters. Unfortunately, he used only adia-
batic wall conditions, thus giving only a partial answer to a very complex problem.
The combined effects of roughness and relaminarization were tested by Reshotko
et al. [6], whereas some relaminarization effects were observed by Back and Cuf-
fel [11]. Again, laboratory-type experiments are suggested to thoroughly and sys-
tematically quantify the effects of high acceleration parameters on wall heat flux
and skin friction. A set-up like that of Nash-Webber where a variety of acceleration
parameters were imposed by using a flexible-wall nozzle contour is suggested.

The turbulence model to include the effects of particle presence in the boundary
layer is far from complete since hardly any validating tests exist in the literature
for rocket nozzle flows. Particle generators producing known-size particles need to
be designed. The particulate concentration needs to be measured in the bound-
ary layer using the available optical technology to enable the engineer to validate
against measured data.

The thick boundary layers which affect the nozzle performance may best be
measured in the altitude test facility at LeRC [27] and other facilities to quan-
tify the thrust decrement for comparison with computations. The details of the
boundary layer flows, however, must be measured in laboratory experiments using
LDV, fiber-optics and other available non-intrusive systems, or using conventional
probes.
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Table 6.1: Boundary Layer Losses

Parameters in Potential Measurements Relationship between
Boundary Layer Relating to the Measurements and Location
Code Parameters and Boundary Parameters
Layer Loss
INPUT PARAMETER
Mixture ratio - Cold flow tests Same as parameter Mixing region
O/F (Conventional) aft of injector
Combustion chamber | Combustion chamber Simplified method for Combustion
pressure, Pc wall pressure Pc, given in Ref. 1 chamber wall
Edge gas total Raman scattering Combustion temperature | Combustion
enthalpy, H, techniques equal to edge gas chamber
temperature and temp-
erature related to
enthalpy
Wall enthalpy, Hw Wall temperature and Hw = CcTw Nozzle
Cp from thermocouple
tables
Gas transport Not measured - Used in BLIMPJ —
properties JANNAF tables
Pressure distri- Wall pressure Same as parameter Nozzle wall
bution on the wall
Geometry of the Drawing; measured Same as parameter —
thrust chamber — area for either short
combustion chamber, | or long duration
converging/ testing
diverging nozzle
Wall roughness, if Roughness density, Same as parameter; Nozzle wall
present — may also roughness profile data equivalent sand rough-
develop in the whole ness is related to
or parts of the roughness parameters by
chamber wall while expressions given in
in operation; equi- Ref. 4
valent sand roughness
Particle or conden- Particle density and Same as parameter Particle gen-
sation (two-phase) particle size erator and
effects — particle size nozzle exit
plane
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Table 6.1: Boundary Layer Losses (Concluded)

RTR 161-01

Parameters in
Boundary Layer
Code

Potential Measurements
Relating to the
Parameters and Boundary
Layer Loss

Relationship between
Measurements and
Parameters

Location

INPUT PARAMETER

Mass flow rate
through the nozzle
throat

Heat transfer rate

at the wall

Velocity and temp-
perature profiles in
the boundary layer

Turbulent length
scale and turbulent
shear stress vari-
ation in the bound-
ary layer

Exit plane velocity

Exhaust gas
temperature
composition

Thrust loss

ISP loss

Feed system measure-
ments

1. Thermocouple
measurements

2. Heat transfer gage

Phase change

4. Calorimetric
measurements

w

Fiber optic based
LDV

LDV

Fiber optics

Nonintrusive studies
such as radiometric

Load cell (strain
gas measurement)

Thrust loss and mass
flow rate

Calculated from the
feed system measure-
ments

1. Thin-skin or thick-
skin relationship

2. Same as parameter

Time-dependent

4. Temperatures related
to heat transfer rate

el

Same as parameter

Turbulent fluctuation
quantities related to
Reynolds shear stress by
standard methods. From
this shear stress, by
length scales can be
derived and compared
against BLIMPJ
turbulence models

Same as parameter

Calculated from
radiometric measure-
ments

Thrust loss = ideal
thrust - measured
thrust

A ISP = AT/mnyg

Feed system

Nozzle wall

Nozzle boundary
layer profiles

Nozzle boundary
layer profiles

Nozzle exit
plane

Nozzle exit
plane
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Table 6.2: Representative Existing Test Facilities

Facilities

Test Set-Up

Advantages and Limitations

NASA LeRC
Rocket Nozzle
Test Facility
(RETF)

Diffuser provides
pressures from
0.03 to 0.05 psia

Altitude simulation possible

1030 Area Ratio Nozzle

Area Ratio Variable — Flanged
Joint existing at 430 area ratio
Another nozzle with 1.4 area ratio
also exists.

Engine Test
Facility at MSFC

SSME Nozzle
Subscale

Fixed Nozzle Geometry — SSME
Altitude Simulation not possible

Engine Test
Facility at AEDC

Altitude simulation possible
Very expensive facility
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Section 7

INSTRUMENTATION

7.1 Background

The previous section dealt with the measurements necessary for verification of
the boundary layer code, BLIMPJ. These measurements will be useful only if the
accuracy of the measuring instruments is within the required range. The document
prepared by Praharaj and Palko [26] identified the various instruments, most of
which were intrusive in nature, and gave typical manufacturer specification and
their quoted accuracies. While selecting an instrument, the cost vs. accuracy
tradeoff must always be considered. Either cost or accuracy may be compromised
depending on the objective of the test. This section deals with both dynamic and
static measurements. The dynamic measurements include velocity vector, turbu-
lent quantities, pressure, temperature, and species concentration. These measure-
ments are made with LDV systems, fiber optic sensors and laser Raman scattering
technique. On the other hand, the static measurements, which are mostly intrusive
in nature, have been described in detail in Ref. [26] and will be only summarized
here.

7.2 Dynamic Measurements

7.2.1 Velocity Vector and Turbulent Quantities
7.2.1.1 2-D and 3-D Laser Doppler Velocimeter Systems

The most common scientific application of laser instrumentation is as a Doppler
velocimeter in studies of fluid dynamics. The principle of this technique is based on
the detection of the “Doppler” shift (named after the Austrian physicist who first
considered the phenomenon in 1842) of laser light scattered from small particles
moving with the medium (either natural or added) by a stationary photodetector.
The technique has the potential of complete linearity between transducer response,
which is directly related to Doppler frequency shift, and the particle velocity. In
contrast, other transducers, such as the hot-sensor and the pitot-probe systems,
are only approximately linear within limited ranges. The major advantages of the
laser Doppler velocimeter are:
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It does not disturb the flow since no physical probe is inserted into the
measuring medium.

e It is not subject to damage by fluid environment.

e No flow calibration required, no drift.

e It has high spatial and temporal resolution with fast response.

e Instantaneous multi-component, bi-directional measurements can be made.

e Operation is not affected by temperature, density and composition changes
in the fluid.

For the measurement of fluid velocity dynamically, the hot-sensor (hot-wire or
hot-film anemometers) performs less well in highly fluctuating flows, particularly
at low mean velocity. The sensitivity of the sensor to more than one velocity
component causes measurement errors that are not easily compensated. The mea-
surement of reversing flow velocities, of course, cannot be detected with a single
probe. These problems may in principle be eliminated by employing moving hot-
sensors which is the equivalent of the frequency shift in laser Doppler velocimeter
systems. However, the method still implies insertion of a probe into the flow, and
the flow disturbances can introduce serious errors, especially in the measurement
of thin boundary layers and fluctuating components of fluid velocity.

Although the laser Doppler velocimeter technique is a very powerful research
tool, it is not a general replacement for other techniques, since optical access is not
always possible or available, and the equipment for the system is expensive. The
laser Doppler technique has, however, proven to be valuable in study of separated
flows, variable property flows, flows within blade rows in rotating machinery, low
velocity flows, liquid flows, combustion and flames, high turbulence intensity flows
and flows with recirculations.

In considering the laser Doppler velocimeter technique for flow measurements,
conditions under which the measurements are carried out need to be fully con-
sidered. Also, it is of vital importance to know whether the system will satisfy
the measurement requirements, or what the optimum system needs to be in order
to meet all the requirements. The prime concern should be focused on the flow
measurement region and its accessibility for laser beams either through optical
windows or through transparent sections.

To study the flow problem in a subscale rocket engine, a two-color, three-
component, dual-beam, Bragg-diffracted (vectorized) laser Doppler velocimeter
(LDV) system (Fig. 7.1) may be utilized. This system can be developed based on

109



RENMTECH RTR 161-01

the complexity of internal viscous flow and the fluctuating fields in the rocket’s
combustion chamber and nozzle. The system arrangement for the LDV consists of
six major subsystems: the light source, the optical system, the traversing mecha-
nism, the particle generator, the signal processor and data processor. For details
of these and other items, references such as (28], [29] and [30] may be used. The
associated measurement errors are discussed in the following paragraphs.

At the present stage, the value of the laser Doppler velocimeter as a useful
measuring technique is well established. The applicability of the system to widely
different flow problems shows the potential capabilities of the technique. However,
as with any flow diagnostic tool, the laser Doppler velocimeter system can introduce
some uncertainties and errors into the measurement. In general, the potential
sources of measurement error may be categorized into five areas: (1) Optical system
errors, (2) multi-measurement biasing, (3) signal processing measurement €rrors,
(4) aerodynamic uncertainties, and (5) statistical uncertainties. For completion of
the 3-D LDV system analysis all these error sources are discussed and ways that
were taken to avoid or correct them are presented in this section.

The optical system errors consist of the cross beam angle measurement un-
certainty and the uncertainty in the parallelism of the fringes in the measuring
control volume. The uncertainty in the measurement of the intersection beam an-
gle is dependent upon the precision with which the angle is measured. The fringe
distortion occurs when two Gaussian beams do not intersect at the waist (the lo-
cation of the narrowest part of the beam). If the beams intersect correctly in the
waist region, the fringes are truly parallel, but when the intersection occurs before
or after the waists, a set of diverging fringes is generated. In this case, particles
passing through the control volume perpendicular to the optical axis, but at dif-
ferent positions will produce Doppler signals of different frequency even if their
velocities are identical. Thus, the degree of parallelism of the fringes is dependent
upon the distance between the focal point of each Gaussian laser beam and the
probe volume location.

The multi-measurement biasing is due to the Bragg bias error, which is based
on the fact that since the Bragg cell causes the fringe pattern to move in the probe
volume, it is possible to obtain multimeasurements from the same seed particle as it
passes through the volume. However, this bias can be eliminated by using a Bragg
cell, the frequency of which is large compared to the signal frequency and also, by
time averaging rather than particle averaging of the data. Another possible error
due to the Bragg cell is the detection of directionality in the velocity measurements.
At points in a flow where particles can occasionally cross the control volume in a
negative direction, the stationary-fringe LDV measurements will be biased since
the sign of the velocity cannot be distinguished in a stationary-fringe system. This
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negative velocity biasing can be corrected by using a moving-fringe vector (Bragg
diffraction) LDV system.

The measurement errors due to the burst counter processor include filter cut-
off bias and incomplete signal bias. Filter cut-off bias is based on the realization
that when the signals from some moving particles in the measuring volume are
lost due to filters in the processing system, the set of measurements will be biased
because all lost signals will be at one end of the velocity histogram. This error
can be reduced if the counter type processor is built with wide frequency response.
Incomplete signal bias is due to the particles which pass through the probe vol-
ume without crossing the required number of fringes. Since these particles have
low velocity components and sometimes zero velocities in the measured direction
(normal to the fringes) their rejection by the processor will result in a biased set of
measurements. However, this bias can be easily eliminated by using a vector LDV
system. There are other possible electronic error sources such as clock synchro-
nization error which is due to the timing mismatch of the signal frequency and the
reference clock, quantizing error and truncation error that should be considered in
the flow measurements.

The aerodynamic uncertainties due to particle response to the flow field con-
sist of uneven seeding bias, multiple particle bias, and particle acceleration bias.
Uniform distribution of particles throughout the flow is essential for correct and
successful measurement of the fluid velocity distribution at a point. Nonuniform
particle size distribution in the flow can introduce some errors in the measured
mean-velocity because the large particles normally do not follow the flow as well
as small particles (particle lag). Furthermore, as the seeding density increases there
is a possibility that more than one particle will tend to traverse the probe volume
simultaneously. Thus, the signal from first particle is more likely to be rejected
(while it is being processed) because a second one has entered the probe volume
and therefore the set of measurements will be biased. These error sources can be
nearly eliminated if a properly designed laser seeding generator is used and also
by using a signal validation circuit in the counter type processor which is capable
of rejecting signals from multiple particles and signals from highly accelerating or
decelerating particles in the probe volume.

Statistical uncertainties need to be considered since the measured quantities
(e.g., mean, standard deviation, etc.) are statistically determined from an average
of velocity measurements. In nozzle flow investigation, all statistical errors can be
removed by applying a time-averaging method where all the data are weighted by
the amount of time elapsed between each particle arrival. This requires that time
as well as velocity data be taken.
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7.2.1.2 Fiber Optic Based Laser Doppler Velocimeter System

Currently, there is a strong demand for reliable experimental data to evalu-
ate the important parameters used in describing and predicting the nozzle flow
behavior. A better understanding of the mechanisms occurring in the viscous noz-
zle flows will allow practicing engineers to optimize and/or design more efficient
thrusters. Detailed studies of the nozzle flow require suitable measuring techniques
to provide practical information of interest. Measuring techniques which require
sampling probes to be located at the measuring point are unacceptable in the
nozzle because they may result in unwanted disturbance and possible sample er-
rors. The employment of non-intrusive methods, such as the noncoherent light and
sound waves directed across the flow field, can only provide integral information
which is difficult to interpret since strong variations can occur along the light or
sound paths. Due to these difficulties, optical methods based on laser and fiber
techniques seem very appealing to determine the nozzle flow characteristics.

To satisfy the above requirements, an advanced two-component laser Doppler
velocimeter system and fiber optic sensors are proposed to be designed and de-
veloped for simultaneous measurements of two-dimensional local velocity vector,
pressure, and temperature in the nozzle flow fields. These measurements are ex-
pected to provide accurate and valuable information about the nozzle flow fields.

The application of the laser and fiber optics to measurements in a highly com-
plex flow such as the combustion chamber or nozzle of a rocket engine, requires
innovative approaches due to the constraints inherent in the measurement tech-
nique. The laser velocimeter concept allows for the measurement of gas dynamic
velocity by the sensing of the Doppler shift in laser light that has been scattered
by particles moving with the gas. The measurement is direct in that the particle
velocity and Doppler frequency shift are proportional to each other. The propor-
tionality constant consists of the laser wavelength, A, and the geometrical orien-
tation of the laser velocimeter optical system or the angular relation between the
incident laser light and the scattered light. Fiber optic sensors offer several signif-
icant advantages over conventional sensors. Their high sensitivity and exceptional
signal-to-noise ratios can deliver performance more traditional approaches cannot
match. They offer geometric flexibility and immunity to electromagnetic interfer-
ence and hostile environment conditions. Fiber optic sensors of many types can
be developed. Generally, they are categorized as amplitude- or phase-modulated
optical devices. While some fiber sensors are highly sophisticated, others are ele-
gantly simple. Regardless of their complexity, they all employ similar components
and utilize common operating principles. They typically exploit changes in the
intensity (amplitude), polarization or phase of light propagating in the fiber. Sub-
tle perturbations of the geometry, length or refractive index of a fiber or coupling
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between fibers can provide innovative ways to measure physical phenomena such
as velocity vector, temperature or pressure. Thus, the basic measurement require-
ments for the laser Doppler velocimeter and fiber optic sensors are: (1) a coherent
light source such as a laser with sufficient power to shine light into the measuring
field of interest, (2) the transmitting (focusing) optics to transmit and direct the
laser beams into a small and well-defined measurement region or probe volume,
(3) the receiving optics to collect the scattered light generated by the natural or
artificial particles present in the flow and direct it to the signal detectors, (4)
single-mode or multimode optical fibers, (5) photodetectors with sufficient signal
gains to convert coherent light signal to electrical signal, (6) a signal processor to
convert the electrical signal to a voltage proportional to velocity, temperature or
pressure, and (7) a computer or other similar data reduction system to allow for
computation and/or analysis of the data for the desired information.

The optical configuration of the recommended fiber optic based laser Doppler
velocimeter system is illustrated schematically in Fig. 7.2 for the nozzle flow veloc-
ity measurements. For the practical application of the laser Doppler velocimeter
system, a small and low-cost, commercially available, air-cooled He-Ne laser, which
delivers 30 mW of stable power output, can be used as a light source. The laser
emits a red light of 632.8 nm wavelength and operates in the uniphase TEMqgo
(Transverse Electromagnetic Mode) having a Gaussian radial beam profile. A
beam collimator is used to control the beam divergence for the LDV optical sys-
tem. In order to measure the two orthogonal components of local velocity in the
same probe volume simultaneously, it is necessary to generate two superimposed
sets of interference fringes. This is accomplished by applying the dual-beam optical
frequency preshifting technique and employing a single two-dimensional ultrasonic
Bragg cell modulator as shown in Fig. 7.2. The Bragg cell functions as both the
beam splitter and the frequency shifter. The collimated laser beam is passed into
the Bragg cell’s optical quality window and four equally intense beams are pro-
duced. The two red pairs of beams operating at a single wavelength (632.8 nm) are
frequency shifted by the Bragg cell driver with carrier frequencies of 25 and 15 MHz
representing the x- and y-components of velocity vector, respectively. Thus, fre-
quency differences in orthogonal beam pairs are 15 and 25 MHz. The four parallel
red beams then are focused to a common measuring point by a set of achromatic
transmitting lenses. The common measuring point of probe is composed of two
superimposed sets of interference fringes as shown in Fig. 7.3. The interference
fringes are produced by the intersection of the two pairs of vectorized laser beams
where each region of intersection is used to measure one orthogonal component of
velocity. Two photodetectors are employed to convert the collected scattered light
into an electrical signal. A block diagram of the signal processing electronics is
presented in Fig. 7.4.
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The fiber optic LDV system, shown in Fig. 7.2, can be used for the nozzle flow
measurements in small or restricted spaces. The system is immune to electrical
noise and reduces the potential for damage to the laser from hostile measurement
environments. The fiber optic probe can be positioned inside or outside the flow
and maneuvered easily using a simple traversing arrangement. Because the probe is
highly maneuverable, the measuring volume can be repositioned simply by moving
the probe, rather than by moving the complete LDV system.

7.2.2 Pressure and Temperature
7.2.2.1 Fiber Optic Pressure Sensor

A simple and rugged fiber optic sensor based on a reflecting Fabry-Perot in-
terferometer for the remote measurement of the nozzle or combustion chamber
pressure is shown in Fig. 7.5. The system consists of one fixed mirror and a second
mirror which moves under the action of the pressure being monitored. A single
multimode fiber is used to connect the passive, remote sensor to the transmit-
ter/receiver section. The potential advantages of fiber optic pressure sensors over
conventional types are well known and include: immunity to electromagnetic inter-
ference, intrinsic safety in hazardous environments due to their electrically passive
nature, and the convenience of remote sensing over low attenuation optical fiber.

7.2.2.2 Fiber Optic Temperature Sensor

Figure 7.6 shows the configuration of a radiometric temperature measurement
using infrared optical fibers. A combination of an optical fiber and a radiome-
ter permits remote temperature measurements in the rocket engine environments.
Energy emitted from the measuring point is focused by a lens onto one end of an
IR fiber, transmitted through the fiber, and detected by a remotely located IR
detector. The function of the detector is to convert the detected radiation energy
into an electrical signal.

7.2.3 Species Concentration and Temperature
7.2.3.1 Laser Raman Scattering Technique

The laser velocimeter inherently provides velocity vector and associated turbu-
lent quantity information. The Raman technique provides measurements of local
static density (species concentration) and temperature and is not flow direction
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sensitive. Both techniques offer local “point” measurements. Combined, these
techniques offer the potential of local nondisturbing simultaneous measurements
of the three basic gas parameters, i.e., velocity, density, and temperature, necessary
to define the thermodynamic state of the fluid.

When a beam of monochromatic light traverses a gas mixture, the resultant
scattering phenomenon involves both the elastic and inelastic interactions of the
photons with the gas molecules. The elastic interaction results in Rayleigh scatter-
ing, whereas that caused by the inelastic interaction results in Raman scattering.
The Raman scattered radiation consists of radiation in which the energy, and
therefore, the frequency, has been changed by an amount characteristic of the en-
ergy differences between the stationary energy states of molecules it encounters.
The shift can result in an increase in energy, and subsequent increase in frequency
(Anti-Stokes Line), or a decrease in energy and subsequent decrease in frequency
(Stokes Line), of the scattered radiation. This frequency shift is a unique char-
acteristic of the scattering molecules and is independent of the frequency of the
incident radiation. Therefore, the individual species present in the gas mixture can
be uniquely distinguished by monitoring the frequencies of the scattered radiation.
Not only can one distinguish between the different species comprising a gas mix-
ture, but, by measuring the intensity of each component of the scattered light one
can determine the temperature and concentration of each diatomic or polyatomic
species in the mixture.

Excitation at both the Pump frequency, Wy, and the Stokes frequency, Wy
is required, necessitating the use of the laser sources. Since Raman spectra are
obtained by scanning the difference, Wy — Ws, one of the two lasers must have
frequency-tunable output. Since the CARS (Coherent Anti-Stokes Raman Spec-
troscopy) signal scales as PZPS, high laser powers are desirable and pulsed lasers
are almost always used in CARS. Fairly tight focusing, 50 to 200-gm-diameter
spot size, of the laser beams also is generally used.

7.3 Static Measurements

7.3.1 Wall Pressure and Temperature

There are three sets of static measurements desired in the combustion chamber
and nozzle of a rocket engine during a reactive test: (1) pressure distribution, (2)
temperature distribution, and (3) heat transfer rate. Numerous details of various
sensors are given in Ref. [26]. The most important of these sensors are discussed
below.
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The combustion chamber pressure can vary from 10 psia to 5000 psia depending
on the type of rocket engine and fuel used, and the location of the pressure orifice
can vary from behind the injector face to near the nozzle throat. For a hot gas
simulation test, the pressure should be measured at several locations along the
chamber wall starting just aft of the injector face and ending just forward of
the start of contraction. The specifications for a series of high accuracy pressure
transducers that cover the range of normal combustion chamber pressures are given
in Fig. 7.7. The measurement of the combustion chamber temperature during the
hot gas simulation testing can be made with a standard high temperature probe
of similar design as those used in the stilling chamber of a hypersonic wind tunnel
where temperature measurements of 1500°F may be required. Another option is
a sapphire black body optical fiber thermometry system that has an accuracy of
0.2 percent at approximately 4000°R. The specifications for this probe are given
in Fig. 7.8.

The nozzle design for the hot gas simulation model should be such that static
pressure orifices and thermocouples can be located along the nozzle wall starting
as near the throat as possible and continuing at moderate intervals to the exit.
The specification for a pressure scanner that could be used to measure the nozzle
static pressures is given in Fig. 7.9. This particular pressure transducer system
quotes an accuracy of £0.10 percent on full scale. Normally chromel-alumel ther-
mocouples are used for the temperature measurements, although most of the basic
thermocouple types could be used. The temperature measurements could also be
measured using the optical fiber thermometry system as shown in Fig. 7.8. The
accuracy of the temperature measurements is normally the accuracy of the curve
fit used to convert the thermocouple millivolt output to degrees.

7.3.2 Heat Transfer Rate

The heat flux can be obtained from calorimetric measurements by measuring
the chamber coolant temperature (cryogenic fuel when used as the coolant or water
in the case of hot gas simulation) at various stations along the coolant passages
and then using the AT of the coolant, mass flow of coolant, and C} for coolant
from a thermodynamic table to calculate the heat flux. Since the heat-transfer rate
along the nozzle wall is one of the output parameters in the boundary layer code,
it is very desirable to have an accurate measurement of this parameter. It would
be difficult to measure the heat transfer rate using the thin skin technique and it is
difficult to determine the accuracy of the calorimetric method, therefore, it would
be better to design the hot gas simulation model so that heat flux transducers
could be used to measure the heat transfer rate. The specification of a heat flux
transducer is given in Fig. 7.10.
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7.4 Recommendations

Although the static measurements are simpler to design, less expensive and
more readily installed, a combination of static and dynamic measurements should
be tried. These measurements should also be made on full-scale, sub-scale and
laboratory scale rocket nozzles in order to validate the appropriate turbulence
models. A tradeoff of cost vs. accuracy must be considered while designing the
test model and the required instrumentation. If one were starting to conduct the
experimental validation of the modules coded in this report, it will be recommended
to start with (1) laboratory models with static measurements and work upward
with (2) sub-scale and full-scale models with static measurements, and (3) sub-
scale and full-scae models with dynamic measurements.
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OPTICAL FIBER
PARTIAL
DOWN LEAD REFLECTORS
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Figure 7.5: Typical Configuration of a Fiber Optic Remote Pressure Sensor
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Figure 7.6: Fiber Optic Configuration for Infrared Temperature Sensing
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central location. These scanners
feature complete field repairability
down to the transducer level and
include front panel quick discon-
nects of all input pressures.
Electrical interface to the DACU is
provided by the Scanner interface

l,'
l ,

PRESSURE
SCANNERS

Pressure System line of pres-
sure scanners are transducer per
port electronically scanned in-
struments designed for multiple
pressure measurement applica-

tions where high data rates and

accuracy are paramount. These

pressure scanners incorporate sil- ESP ESP- ESP- | ESP- ESP- ESP. ESP-

iconpressure transducers, internal Scanners 16TL | 32T | 32 32sL 48 48sL

multiplexing and amplification with

an integral calibration vaive. They INPUTS 16 32 32 32 48 48 CHANNELS

;:‘(Zsiisrlg:g? éc;yacnc:nr_actglr{gzsaesure RANGE =1-100| =1-100 | = 1-100] =1-100| =1-100 | =1-100 PSID

gaseous media. Several configura- STATIC R R R . . R

tions are available, all fully compat- ERROR || 010 | =010 | =010 | £0.10 | =010 | =0.10 HFS.

'Iafa:sgggz szsgezessure st | 20000 | 20000 | 20000 | 20000 | 20.000 | 20,000 || FEADINGSSEC

MINIATURE el 76 | 76 | 71 | 89 | 107 | 134 |TRansoucermm
The ESP Pressure Scanner line

is designed to offer miniature high Rack

transducer density modules which Scanners 51600 S1600-D $3200

satisfy applications where space is

critical as in wind tunnel model INPUTS 16 16* 32 CHANNELS

testing. All ESP scanners interface 10 10 10 We

to the 7808 Data Acquisition and RANGE 200 T 555 D)

Control Unit using the Scanner STATIC

RACKMOUNT Ry 20,000 20.000 20,000 READING/SEC
The S1600, S1600D and FIELD YES VES VES

S3200 Pressure Scanners are rack REPAIRABLE

mounted instruments for use in DENSITY

test stand applications where PER 19" RACK % % 192 CHANNELS

pneumatics can be brought to a

Racks where all pneumatic and
electrical connections to the pres-
Sure scanners are automatically
mace once secured in the rack.

2222290
2I9Q9QQQ

Rackmount Scanners

ORIGINAL PAGE 1S
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Price Range: $150 to $200 per channel (Basic Transducer)

*S1600-D are True Differential

Figure 7.9: Example Specifications for High Accuracy Miniature Pressure Scanners
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64 Series HEAT FLUX TRANSDUCERS

DESCRIPTION

MEOTHERM 64 Series Heat Flux Transducers offer dependable
direct measurement of heat transier rates in a variety of applica-
wons due 10 carelul design, rugged quality construction and
versatile maunting configuration, Each transducet witl provide a
self-generated 10 millivoll output a1 the design heat Hux level.
Continuous readings from 2ero to 150% design heat flux are
made with inlinie resolution. The transducer autput is directiy
propartional to the net heal transfer rate absorbed by the sen-
sor. Each transducer is provided with a certified calibration
traceable through temperature standards to the Natonal Bureau
of Sundards. These transducers have been proven in thousands
of apphcations in aeraspace apphications, heat transter research,
and bosler desgn.

FEATURES

* LINEAR OUTPUT

* OUTPUT PROPORTIONAL TO HEAT TRANSFER RATE
* ACCURATE, RUGGED, RELIABLE

* CONVENIENT MOUNTING

* UNCOOLED, WATER COOLED, GAS PURGED MODELS
* RADIOMETER AND LIMITED VIEW ACCESSORIES

* MEASURE TOTAL HEAT FLUX

* MEASURE RADIANT HEAT FLUX

* REMOTE MEASUREMENT OF SURFACE TEMPERATURE

CONSTRUCTION FEATURES

ACCURACY, RUGGEDNESS AND RELIABILITY are provid-
ed by the thoroughiy proven Gardon and Schmidi-Boelter sen-
sors.

LONG TRANSOUCER LIFE AND SIGNAL STABILITY are
enhanced by the massive body of pure copper, goid plated to
protect against corrosion, contamination, and excess radiant
heat absorplion Ly the heat sink,

PROTECTION AGAINST ROUGH HANDLING in mounting s
provided by a stainiess siee! flange when specified.

SIGNAL INTEGRITY s protected by the use of welded con-
nections, stranded lead wire with braided copper shieiding and
teflon insulation firmly secured 1n the iransducer body with
strain relie! 10 ersure resistance to rough handling and stray
signals.

ACCESSORIES

REMOVABLE SAPPHIRE WINDOW ATTACHMENTS sre avail-
able 1o limit the basic transducer 10 measurement of radiation
heat flux only.

VIEW RESTRICTOR ATTACHMENTS are available 10 limit
the angie of view for the basic transducer 10 609, 302, 1§ ", or
79 for narrow view angle measurements.

DIRECT READING WEAT FLUX METER Modei H-200 is
available for direct meter readout in any heat flux units from
any linear hear fiux transducer input. A 0-1 volt recorder out-
Put is also providea. Ask far Bulletin 700.

80DY TEMPERATURE THERMOCOUPLE measurement is
provided by an oprional copper constantan 30 AWG sohd con-
ductor thermocoupie, TIG weided junction, with fibergiass in-
wlation and metalix overbrad.

OPERATING PRINCIPLES

The 64 Series transducers are of two besic sensor types, the
‘Gardon type {5 10 4000 BTU/112-sec) ang the Schrmich-Boelter
thermopile type (0.2 16 § 8TU/M2s&). In both 1ype sensors
Peat flux s absorbed at the sensor surface and is transiarred to
an «niegrat heat sink whith remains a1 a temperature below that
of the sensor suriace. The difference in temperature between
two points along the path of the heat tiow from the sensor to
the sink 1§ proportional 10 1he heat being transferred, and, there-
fore propartional 10 the heat flux being absorbed. At two such
points, MEDTHERM transducers have thermocouple junctions
which form a differential inermoelecinc circuit providing a sedif-
generated emf between the two outpul leads directly propor-
tonal to the heat transfer rate. No reference junction 1s needed.

Gardon Gauges absorb heat in 3 thin metallic circular foil and
transier the hesi radwaily (paratiel 10 the absorbing surface) to
the heat sink a1tached at the periphery of the foil; the difference
i temperature is taken belween the center and edge of the foil.

Schmidt-Boetter gauges absurd the heat at ane surface and trans-
fer the heat in a direction normal 10 the absorbing surtace; the
difference in 1emperature 15 1aken belween the surface and »
ptane beneath 1ne surtace.

OPTIONAL FEATURES include tour mounting configuratians,
waler COOHNG Provisions, gas purge provisions, or thermocouples
for body tempersture Mmeasurement. Water cooling should be
specified 1f the uncooled transducer is expected 1o reach above
4000F

The gas purging provision should be inciuded on radiation trans-
ducers to be used in 3 souty environment. The MEDTHERM
purge 15 designed to pass niytd NASA performance tests with
fueirich oxy-acetylens fiames directed toward the window at
close range.

STANDARD CONFIGURATIONS

The vasic transducer may be selected n‘snh etther of tour mount-
ing configurations and with o without piavisions for water
zaohing of transducer body. It may also be provided with gas-
*0Us Purging 10 keep (he radienion-transmitting window clean,
but when the purging provision 15 included, the window is in-
stalied and is NOt an accessory.

RADIOMETER WITH GAS PURGING PROVISIONS

Ges Pores  enivy
e pmnan

Figure 7.10: Example Specifications for Rapid Response Heat Flux Transducers
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The four awsitable mounting configurations are illustrated below. There is the smooth body with flange, the threaded body with flange, the
smooth body without flange, and the threaded body without flange. All mounting Hanges are 1,75 dia. with .150"* dia. mounting holes equal-
ly spaced on 8 1.38" dia. bolt circle. Water cooling tubes [when specified) are . 1/B"" dia. stainless steet and gas purge tubes are 1/8" dia. stain -

less steel. All tubes are 2 long The threaded transducer bodies are 1-12 UNF.2A threads.

SMOOTH BODY WITH FLANG

THREADED BODY WITH FLANG

VERSION MODEL NO. VERSION MOOEL NO. VERSION MODEL NO.{ VERSION MODEL NO.
BASIC, BASIC, BASIC, BASIC,

NO COOLING 64-xx-16 NO COOLING 64-xx-17 NO COQUING 64-xx-14 NO COOLING 64-xx-15
WATER WATER WATER WATER

COOLED 64-xx-20 COOLED 64-xx-21 COOLED 64-xx-18 COOLED 64.xx-19
AADIATION, RADIATION, RADIATION , RADIATION,

PURGED PURGED PURGED PURGED

COOLED B64P.xx-24 COOLED 64TP-xx-25 COOLED 64P-xx-22 COOLED 64TP-xx-23

SMOOTH BODY,

=4

NO FLANGEITHREADED BODY, NO FLANGJ

SAPPHIRE WINDOW ATTACHMENT may be added for elimi-
nation of convective heat transfer, thus making the transducer a
radiometer or radiation heat flux transducer. Three view angtes
are availabie: 300, 1209, and 1509, Windows are removabie
and replaceable by user. When the window is used the sensitivity
of the basic transducer is reduced 10 a nominal fraction of the
original as follows: S0C, 43%: 1200, 64%, 1500, 79%. Thick-
ness of the attachment varies with view angle ang sensor type
from 1/16" to 3/8".

VIEW RESTRICTOR ATTACHMENTS for limiting the ares
view Or seen by the sensor are sometimes desired fo: making
radiation or remote temperature Measurements.

T

B

MY Rt
in
3 tamsny wmor ow 4 107

(Concluded)

SPECIFICATIONS

RANGES AVAILABLE: 4000, 3000, 2000, 1000, 500, 200,
100, 50, 20, 10, 5, 2, 1, 0.2 BTU/f12-5ac. design heat flux
tevel.

QUTPUT SIGNAL: 10 miltvolts * 1.5 millivolts st full range.

MAXIMUM ALLOWABLE OPERATING BODY TEMPERA-
TURE: 400°F,

OVERRANGE CAPABILITY: 150% for 5-2000 BTU/t2.sec
ranges; 500% for 0.2-2 8TU/112 sec ranges.

[T p— ¢ MAXIMUM NON-LINEARITY: *2% of fuli range
Rl BODY STYLE “D” CALIB? MODEL . REPEATABILITY: +1/2%
© ACTURACY: 3% for most ranges
SMOOTH 1.0 NO  Ssw..vy CALIBRATION: Certified calibration provided with each trans-
wy; THREADED 84 NO Sw.2.vy ducer,
SMOOTH 1.0 YES SW.IC-YY SENSOR ABSORPTANCE. 92%, nominal, from 0.6 1o 15.0
THREADED .84 YES SW.2C-YY microns.
SPECTAUM TRANSMITTED BY SAPPHIRE WINDOW (When

used}: 85% nominal from 0.15 10 5.0 micrans.

LEAD WIRE" 24 AWG stranded copper, two conductor, tefion
insutation over each, metalhc overbraid, 1etlon overali, 36"
iang, sinipped ends.

RESPONSE TIME 163.2%}:

500 to 4000 BTU/ttZsec: less than 50 msec.
50 to 200 BTU/ftZsec: less than 100 msec.
510 20 8TU/t12sec iess than 290 msec.

0.2 10 2 8TU/MZ5ec: tess than 1500 msec.

SENSOR TYPE
5 to 4000 BTU/1tZsec: Gardon Gauge
0.2 10 4 BTU/! 258" Schmudt- Boeiter

NOMINAL IMPEDANCE
Less than 10 ohms on Gardon Gauges
Less than 100 ohms on Schmidi-Boelter Gauges.

Amount of heat which tan be absorbed by transducer in an

VIEW NOMINAL % BASIC MODEL
ANGLE e SENSITIVITY NO. achabatc {periectly insulatea thermatiyl Installation before ex-
ceeding the 4009F {imitation
70 3.9" 4% VR-7 Modeis without water cooiing prowsions: 6.2 BTU
15 2.3 1.7 VR-15 Models with water cooling Provision but without waler n
30 1.6 6.6 VR-30 passages: 4.2 BTU.
60 1.2 25.0 VR 60 Maximum gas pressure for 903 purged models. 150 psig.

Figure 7.10: Example Specifications for Rapid Response Heat Flux Transducers
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APPENDIX

SUMMARY OF MODIFICATIONS TO THE
TURBULENCE MODELS AND ADDITIONS OF
ENGINEERING MODELS IN BLIMPJ

WALL SURFACE ROUGHNESS EFFECTS

The Cebeci-Smith turbulence model given in Ref. [1] was modified in Ref. [3]
using the formulation of Cebeci and Chang in Ref. [7] to include the effects of wall
surface roughness. The expression for mixing length given by

=04 y{l —exp(-y/A)}

is modified and rewritten as

(=04 (y+Ay) [1-exp{-(y+ Ay)/A}]

where the coordinates are displaced by an amount A y. A y is expressed as a
function of an equivalent sand-grain roughness parameter K} (= K, U,/ v), i.e.,

Ay=09(v/U;) {\/IF K} exp (—K:'/G)}

This expression is valid for 4.533 < K} <2000, with the lower limit corresp onding
to the upper bound for a hydraulically smooth surface.

This report considered multiple smooth/rough surfaces, where, for smooth sur-
faces, K, was set to zero and, for rough surfaces, K, was set equal to the appro-
priate values.

Reference [3] also included the following engineering options to calculate skin
friction and Stanton Number for rough surfaces.

Skin friction compressibility (Young)

cr, =0 () + o ()
oL =065 ( fro) + 0835
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Incompressible rough wall skin friction

Option (1) Prandtl-Schlichting

Cyi = [2.87 + 1.58 logyq (z/k)] 25

Option (2) Droblenkov

Cti = 0.0139 (z/k)~1/7

Rough surface turbulent Stanton Number (Seidman)

-1

0.725
St = % [1 + 4 (%) (Rex)™*® (Pr)O-SJ

where A = 0.52 nominal and range from 0.45 to 0.7 (Owen & Thompson), and Cy
is obtained from the first equation given.

Transition Criterion (Fenter)

rk

M = pPul where U, = U, ﬂ&
Hw 2 puw

e < 5, Smooth

9 < m <100, Transitionally rough

100

IN

Mk, Rough

RELAMINARIZATION EFFECTS

Eddy viscosity, ex, in any of the three algebraic eddy viscosity models in Ref. [1]
and this report is varied with acceleration parameter, K, from a turbulent ¢, (ref)
value to a value of zero for completely laminar flow according to

o (B2t

where K is given by
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K = I_‘w . dUe
PuUZ  dz ’

the lower limit, K7, is given by
Ki=aR*+bR+¢c

where a = 8.935 x 10-14
b = 2.239 x 10°10

with ¢ given by
c = 027 x107% K, <0.8 x 10~¢

= -0.27 x 107% + 0.676 x 10~2 K,,
0.8 x 107 < K, < 4.1 x 104

= 25 x107% K,> 4.1 x 10~

Where
K. —= K, dU,
r U. ' dz

and the upper limit, K, is given by
Ky = 07 x107% K, <08 x 10°*

= —0.245 x 107% + 1.182 x 1072 K,,
08 x107* < K, < 4.1 x 10¢

= 46 x107% K, > 4.1 x 10~*

EFFECTS OF CONDENSED PHASE

The ratio of particle diffusivity to eddy diffusivity is given by

D, AL (312 1
=1 A= _
=13k () o ()

133

RTR 161-01



RENMTECH RTR 161-01

where I = (/7 /18) < Ng, > (pp /pf) (2"P/ /\L)
— )
with < Np.> = (/1) <o’ 512
Ar = _flf_
L= s
and Ag = & (= local boundary layer thickness)

The eddy diffusivity, D 7 (E ep), is calculated in BLIMPJ.

Assuming the turbulent Schmidt Number to be constant between clean flow
and flow with particles,

€ €
oe(z),- 2
€D p €D
from which the eddy viscosity, ¢,, for the particulate flow is obtained as
2 _ D
€ €D

Reference [3] also included the following engineering options to calculate skin
friction and wall heat transfer rate for particulate flow.

Laminar Boundary Layer (Marble)

_ KX, /z\ X,

C; = CipVI+K (1+0.49 1+K), — <1

and § = G,VI+K (1+0.49M),ﬁ<<1
1+ K T

where K = p,/p,

mU,
- 6map,
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Turbulent Boundary Layer

For :—VV? <

Cr =
and q. -
where f(5 =

W,
For = D>
Wy

But, Nu, =

Particle Factor =

Cr =

1 (Tien)
Cfo (1 + 135)

do (1 + ,35)

CP WP
Cy Wy

1 (Farbar and Morley)

0.45
0.14 Rep ¢ . (W, / Wy)
0.023 (Rep)®® . pp0t
( Nu) .

Nu, 2o

Nu/Nu,

Nu
Nu,

. Cfo
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